OpenLMIS Documentation
Release 3.0

VillageReach

Apr 05, 2023

Contents

1 Contents: 3

2 Links: 197

OpenLMIS Documentation, Release 3.0

o

g
o

| 4

OpenLMIS

o

OpenLMIS (Open Logistics Management Information System) is software for a shared, open source solution
for managing medical commodity distribution in low- and middle-income countries. For more information, see
OpenLMIS.org.

Contents 1

http://openlmis.org

OpenLMIS Documentation, Release 3.0

2 Contents

CHAPTER 1

Contents:

1.1 Release Notes

To download a release, please visit GitHub.

1.1.1 3.14.0 Release Notes - October 7, 2022

Status: Stable

3.14.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.14.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.13.0, see OpenL.MIS 3.14.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

https://github.com/OpenLMIS/openlmis-ref-distro/releases
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.14%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html

OpenLMIS Documentation, Release 3.0

Upgrading from Older Versions

If you are upgrading from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please review the 3.2.0 Release
Notes for important compatibility information about a required PostgreSQL extension and data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.14.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.14.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community focused on the following work in version 3.14.0:

¢ Seed Tool Improvement The OpenLMIS Seed Tool now supports incremental updates for all configuration
metadata, allowing for a simplified round-trip of configuration data.

¢ Additional In-App Adminstration Additional administration pages have been added to OpenLMIS: Valid
Sources, Valid Destinations

¢ User’s signature added in Proof of Delivery Generated Proof of Deliveries contain the users signature now.

* Additional features in Mobile App There are new features available in the mobile app, including Adjustment,
Receiving and Issuing functioantlities, next to improved Physical Inventory process.

Reference the 3.14 epics for more details.

Changes to Existing Functionality

See all 3.14 issues tagged ‘UlChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

The performance of version 3.13 is similar to 3.12 with some modest improvements. Performance remains a high
priority for the OpenLMIS community and we continue to review the overall performance picture and look for oppor-
tunities for improvements.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.10, 3.11, 3.12, and 3.13 using the same test data.

4 Chapter 1. Contents:

http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.14.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.13%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.13%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.14%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.13%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times for versions 3.10 through 3.13

40
30

20

10 ||
0
gt

Q e & b & & SN % > o N 2 $
\’Q""‘G B o . ?ﬁ-’a“ '\e? o \ﬂ{\\‘(\%ﬁﬁ 5\5{){“ (Le‘%e'a% 2 o v\)\{\oﬂ\ Q@q@,\ﬁ ‘—;\Q\\\e‘ ‘0\1'3\1\ ?QQ) o 5@‘\} o ! o® Qt(:;@‘
W ot G P AL 9 . ot o
w b 9’:0(‘ ;P\Em v\)‘(ﬁd‘ PQQ@“ W GQ{NB"\ CP(N C‘o(\‘*

W:0 W31 W32 W33

Test Coverage

OpenLMIS 3.14.0 was tested using the established OpenLMIS Release Candidate process. As part of this process,
full manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during
the release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.13.0. Manual tests were conducted using a set of 99 QAlity tests tracked in Jira and 7 manual tests for
reporting. For more details about test executions and bugs found for this release please see the 3.14 QA Release and
Bug Triage wiki page.

All Changes by Component

Version 3.14.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.3.3

Auth CHANGELOG

CCE Service 1.3.2

CCE CHANGELOG

1.1. Release Notes 5

https://openlmis.atlassian.net/wiki/spaces/OP/pages/2199355393/The+3.14+Regression+and+Release+Candidate+Test+Plan
https://openlmis.atlassian.net/wiki/spaces/OP/pages/2199355393/The+3.14+Regression+and+Release+Candidate+Test+Plan
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment Service 9.0.3

Fulfillment CHANGELOG

Notification Service 4.3.3

Notification CHANGELOG

Reference Data Service 15.2.3

ReferenceData CHANGELOG

Report Service 1.2.2

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.2.x version to build additional reports.

Report CHANGELOG

Requisition Service 8.3.4

Requisition CHANGELOG

Stock Management 5.1.6

Stock Management CHANGELOG

Reference Ul 5.2.3

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.6.6

ReferenceData-UI CHANGELOG

Auth-Ul 6.2.8

Auth-UI CHANGELOG

6 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

CCE-Ul 1.1.1

CCE-UI CHANGELOG

Fulfillment-Ul 6.1.1

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.8

Report-UI CHANGELOG

Requisition-Ul 7.0.7

Requisition-Ul CHANGELOG

Stock Management-Ul 2.1.2

Stock Management-Ul CHANGELOG

Ul-Components 7.2.7

UI-Components CHANGELOG

Ul-Layout 5.2.1

Ul-Layout CHANGELOG

Dev U1 9.0.3

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

1.1. Release Notes

https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.2 3.13.0 Release Notes - April 22, 2022

Status: Stable

3.13.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.13.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.12.0, see OpenLMIS 3.13.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please review the 3.2.0 Release
Notes for important compatibility information about a required PostgreSQL extension and data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.13.0

8 Chapter 1. Contents:

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.13%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.13.0

OpenLMIS Documentation, Release 3.0

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenLMIS
3.13.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community focused on the following work in version 3.13.0:

Requisition-less Orders OpenLMIS now supports the ability to create orders without a requisition. Once
the order is created, it will flow through the normal processing, as configured for the program in question.
This feature is primarily intended to support COVID vaccine scenarios where a source requisition may not be
created, but may have other uses outside of that specific use-case. This feature is not enabled by default but can
be configured in the .env configuration file.

CCE Movements Cold-chain equipment can now be moved from one facility to another, while retaining all the
equipment details.

Hide Zero Quantity Items on Physical Inventory When a zero quantity item or lot appears on the Physical
Inventory, users will now have the ability to hide that record. This should help greatly reduce the visibility of
old data and streamline the usage of the Physical Inventory page.

In-App Lot Creation Users will now be able to add new product Lots (when enabled for the system and for
users with the appropriate right) so that this process of lot creation can be simplified.

Postgres Upgrade (9.6 — 12.x) We have updated to a more recent version of Postgres to keep up with the latest
features, fixes, and to ensure continued support on AWS

Angular — React Upgrade (Ongoing) As part of our continuing effort to modernize the codebase, we have
begun migrating from Angular to ReactJS. This migration will occur over a number of releases as we migrate
pages alongside working on page enhancements.

Reference the 3.13 epics for more details.

Changes to Existing Functionality

See all 3.13 issues tagged ‘UIChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

The performance of version 3.13 is similar to 3.12 with some modest improvements. Performance remains a high
priority for the OpenLMIS community and we continue to review the overall performance picture and look for oppor-
tunities for improvements.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.10, 3.11, 3.12, and 3.13 using the same test data.

1.1. Release Notes 9

https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.12%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.12%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.13%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.13%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times for versions 3.10 through 3.13

40
30

20

10 ||
0
gt

Q e & b & & SN % > o N 2 $
\’Q""‘G B o . ?ﬁ-’a“ '\e? o \ﬂ{\\‘(\%ﬁﬁ 5\5{){“ (Le‘%e'a% 2 o v\)\{\oﬂ\ Q@q@,\ﬁ ‘—;\Q\\\e‘ ‘0\1'3\1\ ?QQ) o 5@‘\} o ! o® Qt(:;@‘
W ot G P AL 9 . ot o
w b 9’:0(‘ ;P\Em v\)‘(ﬁd‘ PQQ@“ W GQ{NB"\ CP(N C‘o(\‘*

W:0 W31 W32 W33

Test Coverage

OpenLMIS 3.13.0 was tested using the established OpenLMIS Release Candidate process. As part of this process,
full manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during
the release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.13.0. Manual tests were conducted using a set of 99 QAlity tests tracked in Jira and 7 manual tests for
reporting. For more details about test executions and bugs found for this release please see the 3.13 QA Release and
Bug Triage wiki page.

All Changes by Component

Version 3.13.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.3.3

Auth CHANGELOG

CCE Service 1.3.2

CCE CHANGELOG

10 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/2199355393/The+3.13+Regression+and+Release+Candidate+Test+Plan
https://openlmis.atlassian.net/wiki/spaces/OP/pages/2199355393/The+3.13+Regression+and+Release+Candidate+Test+Plan
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment Service 9.0.3

Fulfillment CHANGELOG

Notification Service 4.3.3

Notification CHANGELOG

Reference Data Service 15.2.3

ReferenceData CHANGELOG

Report Service 1.2.2

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.2.x version to build additional reports.

Report CHANGELOG

Requisition Service 8.3.4

Requisition CHANGELOG

Stock Management 5.1.6

Stock Management CHANGELOG

Reference Ul 5.2.3

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.6.6

ReferenceData-UI CHANGELOG

Auth-Ul 6.2.8

Auth-UI CHANGELOG

1.1. Release Notes 11

https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

CCE-Ul 1.1.1

CCE-UI CHANGELOG

Fulfillment-Ul 6.1.1

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.8

Report-UI CHANGELOG

Requisition-Ul 7.0.7

Requisition-Ul CHANGELOG

Stock Management-Ul 2.1.2

Stock Management-Ul CHANGELOG

Ul-Components 7.2.7

UI-Components CHANGELOG

Ul-Layout 5.2.1

Ul-Layout CHANGELOG

Dev U1 9.0.3

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

12 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Contributions
Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and

documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.3 3.12.1 Patch Release Notes - Dec 13, 2021

Status: Stable

3.12.1 Patch release is recommended for users of OpenLMIS version 3.12.0 because the patch includes a bug fix for
invalid pagination on /api/validSources and timeout on /api/validDestinations endpoints.

Patch Release Notes

3.12.1 Patch Release contains the bug fix for
e OLMIS-7442
* OLMIS-7387

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Compatible with OpenLMIS 3.12.0

Download or View on GitHub

OpenLMIS Reference Distribution 3.12.1

Known Bugs

No known additional bugs were included in this patch release.

To report a bug, see Reporting Bugs.

New Features

No new features were introduced with this patch release.

1.1. Release Notes 13

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/browse/OLMIS-7442
https://openlmis.atlassian.net/browse/OLMIS-7387
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.12.1
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs

OpenLMIS Documentation, Release 3.0

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

No manual performance testing was conducted for this patch release.

Test Coverage

OpenLMIS 3.12.1 was tested using the established OpenLMIS Release Candidate process.
Patch Release 3.12 RC1 Testing

As part of this process, full manual test cycles were executed for each release candidate published. Any critical or
blocker bugs found during the release candidate were resolved in a bug fix cycle with a full manual test cycle executed
before releasing the final version 3.12.1. For more details about test executions and bugs found for this release please
see .

All Changes by Component
Version 3.12.1 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each

component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Contributions
Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and

documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.4 3.12.0 Release Notes - October 29, 2021

Status: Stable

3.12.0 is a stable release, and all users of OpenLLMIS version 3 are encouraged to adopt it.

14 Chapter 1. Contents:

https://openlmis.atlassian.net/plugins/servlet/ac/com.soldevelo.apps.test_management_premium/test-cycle-details#!testCycleId=15706
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017

OpenLMIS Documentation, Release 3.0

Release Notes

The OpenLMIS Community is excited to announce the 3.12.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenL.MIS
implementers.

For a full list of features and bug-fixes since 3.11.0, see OpenLMIS 3.12.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please review the 3.2.0 Release
Notes for important compatibility information about a required PostgreSQL extension and data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.12.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.12.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community focused on the following work in version 3.12.0:

* One Network Integration OpenLMIS will now integration with the One Netowrk platform in a one-way data
sync from OpenLMIS to One Network. This is the foundation of a more in-depth integration that will be
developed as partners start to utilize this data flow.

¢ OpenLMIS Android Application A first-party OpenLMIS mobile application has been created for the Physical
Inventory process. While the application is fully functional, it is still in the early stages of development and
expected to be extended in coming releases.

Reference the 3.12 epics for more details.

Changes to Existing Functionality

See all 3.12 issues tagged ‘UIChange’ in Jira.

1.1. Release Notes 15

https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.12%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.12.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.12%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.12%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.12%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.12%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC

OpenLMIS Documentation, Release 3.0

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

As expected, the performance of version 3.12.0 is similar to version 3.11.0. Performance remains a high priority for
the OpenLMIS community and we will be revisiting the overall performance picture in upcoming releases.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.9, 3.10, 3.11, and 3.12 using the same test data.

Ul Performance: Loading times for versions 3.9 through 3.12

40

30

20

» i & i N & ¥ > I oi® NG o e
o SN " R o ol Q\\n‘e‘g o ﬂ_e%"_a o® o W QQ'O‘L% ,j\?‘“\é eV et e o7 e
- . ‘ a
W T e’ WO e 3© eV S o o
cQ A

Test Coverage

OpenLMIS 3.12.0 was tested using the established OpenLMIS Release Candidate process. As part of this process,
full manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during
the release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.12.0. Manual tests were conducted using a set of 99 QAlity tests tracked in Jira and 7 manual tests for
reporting. For more details about test executions and bugs found for this release please see the 3.1! QA Release and
Bug Triage wiki page.

16 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
https://openlmis.atlassian.net/wiki/spaces/OP/pages/1757249566/The+3.11+Regression+and+Release+Candidate+Test+Plan
https://openlmis.atlassian.net/wiki/spaces/OP/pages/1757249566/The+3.11+Regression+and+Release+Candidate+Test+Plan

OpenLMIS Documentation, Release 3.0

All Changes by Component

Version 3.12.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.3.2

Auth CHANGELOG

CCE Service 1.3.1

CCE CHANGELOG

Fulfillment Service 9.0.2

Fulfillment CHANGELOG

Notification Service 4.3.2

Notification CHANGELOG

Reference Data Service 15.2.2

ReferenceData CHANGELOG

Report Service 1.2.1

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.2.x version to build additional reports.

Report CHANGELOG

Requisition Service 8.3.3

Requisition CHANGELOG

Stock Management 5.1.4

Stock Management CHANGELOG

1.1. Release Notes 17

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Reference Ul 5.2.1

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. Ul modules

included in the Reference Ul are:

Reference Data-Ul 5.6.6

ReferenceData-UIl CHANGELOG

Auth-Ul 6.2.7

Auth-UI CHANGELOG

CCE-Ul 1.1.0

CCE-UI CHANGELOG

Fulfillment-Ul 6.1.0

Fulfillment-UI CHANGELOG

Report-Ul 5.2.7

Report-Ul CHANGELOG

Requisition-Ul 7.0.6

Requisition-Ul CHANGELOG

Stock Management-Ul 2.1.0

Stock Management-Ul CHANGELOG

Ul-Components 7.2.6

UI-Components CHANGELOG

Ul-Layout 5.2.0

UI-Layout CHANGELOG

18

Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Dev U1 9.0.3

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

¢ Docker scalyr image

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.5 3.11.0 Release Notes - May 28, 2021

Status: Stable

3.11.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.11.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.10.0, see OpenLMIS 3.11.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

1.1. Release Notes 19

https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr
http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.11%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html

OpenLMIS Documentation, Release 3.0

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please review the 3.2.0 Release
Notes for important compatibility information about a required PostgreSQL extension and data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.11.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.11.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community focused on the following work in version 3.11.0:

* Stock Management - Offline Functionality The Stock Management service has been updated to support lim-
ited offline functionality across all stock management entry-related pages. This completes the offline function-
ality started in version 3.10.0 and is a major new addition to the OpenLMIS feature set. This work also provides
the required infrastructure to support other future offline clients, such as a mobile app.

Reference the 3.11 epics for more details.

Changes to Existing Functionality

See all 3.11 issues tagged ‘UIChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

As expected, the performance of version 3.11.0 is similar to version 3.10.0. Performance remains a high priority for
the OpenLMIS community and we will be revisiting the overall performance picture in upcoming releases.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

20 Chapter 1. Contents:

http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.11.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.11%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.11%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.11%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.11%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

The following chart displays the Ul loading times in seconds for 3.8, 3.9, 3.10, and 3.11 using the same test data.

Ul Performance: Loading times for versions 3.8 through 3.11

40
30
20
10
0

9 i) o S o a® \ @t e o X

N R o o .;e"p \'0%9(“ . RO ng@"p p\l\{@\ go‘*'a\ﬁ \Q‘*eﬁ &V 'P“Q@ o oV o o 4 o
S 2 e ¥ G a% R e "
o 2] o W
o o & i \)\vqﬁ WQ“O Gooue*\ GQ{\“‘?‘ o

W35 B35 HW310 W3

Test Coverage

OpenLMIS 3.11.0 was tested using the established OpenLMIS Release Candidate process. As part of this process,
full manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during
the release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.11.0. Manual tests were conducted using a set of 99 QAlity tests tracked in Jira and 7 manual tests for
reporting. For more details about test executions and bugs found for this release please see the 3.1! QA Release and
Bug Triage wiki page.

All Changes by Component

Version 3.11.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.3.1

Auth CHANGELOG

CCE Service 1.30

CCE CHANGELOG

1.1. Release Notes 21

https://openlmis.atlassian.net/wiki/spaces/OP/pages/1757249566/The+3.11+Regression+and+Release+Candidate+Test+Plan
https://openlmis.atlassian.net/wiki/spaces/OP/pages/1757249566/The+3.11+Regression+and+Release+Candidate+Test+Plan
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment Service 9.0.0

Fulfillment CHANGELOG

Notification Service 4.3.1

Notification CHANGELOG

Reference Data Service 15.2.1

ReferenceData CHANGELOG

Report Service 1.2.1

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.2.x version to build additional reports.

Report CHANGELOG

Requisition Service 8.3.1

Requisition CHANGELOG

Stock Management 5.1.3

Stock Management CHANGELOG

Reference Ul 5.2.0

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.6.5

ReferenceData-UI CHANGELOG

Auth-Ul 6.2.6

Auth-UI CHANGELOG

22 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

CCE-UI 1.0.9

CCE-UI CHANGELOG

Fulfillment-Ul 6.0.9

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.6

Report-UI CHANGELOG

Requisition-Ul 7.0.5

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.9

Stock Management-Ul CHANGELOG

Ul-Components 7.2.5

UI-Components CHANGELOG

Ul-Layout 5.1.9

Ul-Layout CHANGELOG

Dev Ul 9.0.2

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

1.1. Release Notes

23

https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.6 3.10.0 Release Notes - November 18, 2020

Status: Stable

3.10.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.10.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.10.0, see OpenLMIS 3.10.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.10.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.10.0

24 Chapter 1. Contents:

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.10%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.10.0

OpenLMIS Documentation, Release 3.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenLMIS
3.10.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community focused on the following work in version 3.10.0:

* Stock Management - Offline Functionality The Stock Management service has been updated to support lim-
ited offline functionality. This offline functionality is currently limited to the Physical Inventory page and adds
the ability to make edits and save the changes locally while offline. Future releases will extend this offline
functionality to the other areas of Stock Management.

* Reporting Stack - Deployment and Configuration Improvements As part of an ongoing effort to improve
and streamline the OpenLMIS Reporting system, we have made significant changes to bring the deployment
and configuration tasks in line with the other OpenLMIS services. This work is ongoing and we welcome any
feedback about future areas to improve.

Reference the 3.10 epics for more details.

Changes to Existing Functionality

See all 3.10 issues tagged ‘UIChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance
As expected, the performance of version 3.10.0 is similar to version 3.9.0. Performance remains a high priority for the
OpenLMIS community and we will be revisiting the overall performance picture in our next release, version 3.11.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.7, 3.8, 3.9, and 3.10 using the same test data.

1.1. Release Notes 25

https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.10%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.10%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.10%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.10%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times for versions 3.7 through 3.10

40
30
20
m ‘ ‘ ‘ ‘

0

? S A L e 5 @ & o &
PN et ‘d:ﬁaﬁ et o o o ‘Qc,ﬁaﬁ ot qg\f’ W o0 o© o W o o
\? % e? e @ ° o @ 4% ol PR 0T e e
‘6\‘\‘3 \\‘3\ {\(‘\ﬂ ot o p? A\ L0 et)
s =1 P i PQQ‘ GQW{%" oo oo™

B:7 B3 W39 B 310

Test Coverage

OpenLMIS 3.10.0 was tested using the established OpenLMIS Release Candidate process. As part of this process,
full manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during
the release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.10.0. Manual tests were conducted using a set of 99 Zephyr tests tracked in Jira and 7 manual tests for
reporting. For more details about test executions and bugs found for this release please see the 3.10 QA Release and
Bug Triage wiki page.

All Changes by Component

Version 3.10.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.3.1

Auth CHANGELOG

CCE Service 1.3.0

CCE CHANGELOG

26 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/1162510491/The+3.10+Regression+and+Release+Candidate+Test+Plan
https://openlmis.atlassian.net/wiki/spaces/OP/pages/1162510491/The+3.10+Regression+and+Release+Candidate+Test+Plan
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment Service 8.2.0

Fulfillment CHANGELOG

Notification Service 4.3.1

Notification CHANGELOG

Reference Data Service 15.2.0

ReferenceData CHANGELOG

Report Service 1.2.1

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.2.x version to build additional reports.

Report CHANGELOG

Requisition Service 8.3.1

Requisition CHANGELOG

Stock Management 5.1.2

Stock Management CHANGELOG

Reference Ul 5.1.9

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.6.4

ReferenceData-UI CHANGELOG

Auth-Ul 6.2.5

Auth-UI CHANGELOG

1.1. Release Notes 27

https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

CCE-UI 1.0.8

CCE-UI CHANGELOG

Fulfillment-Ul 6.0.8

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.5

Report-UI CHANGELOG

Requisition-Ul 7.0.4

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.7

Stock Management-Ul CHANGELOG

Ul-Components 7.2.4

UI-Components CHANGELOG

Ul-Layout 5.1.8

Ul-Layout CHANGELOG

Dev Ul 9.0.1

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

28 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.7 3.9.0 Release Notes - April 15, 2020

Status: Stable

3.9.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.9.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.8.0, see OpenLMIS 3.9.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.9.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.9.0

1.1. Release Notes 29

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.9%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.9.0

OpenLMIS Documentation, Release 3.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenLMIS
3.9.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community focused on the following work in version 3.9.0:

* Stock Management Improvements The Stock Management service has been updated to address feedback
received from implementing countries. These updates include bug fixes, usability improvements, and the start
of work on performance improvements that will continue for the next few releases.

Reference the 3.9 epics for more details.

Changes to Existing Functionality

See all 3.9 issues tagged ‘UlChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

The performance of version 3.9.0 is on par with version 3.8.0 with slight performance regressions reported in the
Requisition service. Performance remains a high priority for the OpenLMIS community but work will be shifting to
focus on the Stock Management service in coming releases and users should expect the performance of the Requisition
Service to remain in the same range during that time.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.6, 3.7, 3.8, and 3.9 using the same test data.

30 Chapter 1. Contents:

https://openlmis.atlassian.net/issues/?jql=issuetype%20%3D%20Bug%20AND%20project%20%3D%20OLMIS%20AND%20affectedVersion%20%3D%203.9%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=issuetype%20%3D%20Bug%20AND%20project%20%3D%20OLMIS%20AND%20affectedVersion%20%3D%203.9%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20fixVersion%20%3D%203.9%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.9%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times for versions 3.6 through 3.9

40

30

20

] w [s; Egp ™ Egp 4% L8 A& 2 2t =
o R 3 cs e©® \'f\gad o o o M\“o“ aﬁ“‘g\ﬁ \‘f\\\gﬁ 0@\1‘ R0 © Dﬁc’aﬁ\} A o 5'© o
W 2 & o (i a1 G W o o & A
o) C Q' g S N
W@ g SRS P%‘dla c,n“‘?‘"\ o c,o“'{é

W5 W37 W3z W39

Test Coverage

OpenLMIS 3.9.0 was tested using the established OpenLMIS Release Candidate process. As part of this process, full
manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during the
release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.8.0. Manual tests were conducted using a set of 99 Zephyr tests tracked in Jira and 7 manual tests for
reporting. Only a single non-critical bug was found during testing! For more details about test executions and bugs
found for this release please see the 3.9 QA Release and Bug Triage wiki page.

All Changes by Component

Version 3.9.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.3.0

Auth CHANGELOG

CCE Service 1.3.0

CCE CHANGELOG

1.1. Release Notes 31

https://openlmis.atlassian.net/wiki/spaces/OP/pages/745472074/The+3.9+Regression+and+Release+Candidate+Test+Plan
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment Service 8.1.1

Fulfillment CHANGELOG

Notification Service 4.3.0

Notification CHANGELOG

Reference Data Service 15.2.0

ReferenceData CHANGELOG

Report Service 1.2.0

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.2.x version to build additional reports.

Report CHANGELOG

Requisition Service 8.2.2

Requisition CHANGELOG

Stock Management 5.1.0

Stock Management CHANGELOG

Reference Ul 5.1.8

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.6.3

ReferenceData-UI CHANGELOG

Auth-Ul 6.2.4

Auth-UI CHANGELOG

32 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

CCE-Ul 1.0.7

CCE-UI CHANGELOG

Fulfillment-Ul 6.0.7

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.4

Report-UI CHANGELOG

Requisition-Ul 7.0.3

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.7

Stock Management-Ul CHANGELOG

Ul-Components 7.2.3

UI-Components CHANGELOG

Ul-Layout 5.1.7

Ul-Layout CHANGELOG

Dev Ul 9.0.1

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

1.1. Release Notes

33

https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.8 3.8.0 Release Notes - December 19, 2019

Status: Stable

3.8.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.8.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.7.0, see OpenLMIS 3.8.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.8.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.8.0

34 Chapter 1. Contents:

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.8%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.8.0

OpenLMIS Documentation, Release 3.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenLMIS
3.8.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community proudly presents the following new features with 3.8.0:

¢ Performance Improvements This release addresses some of the performance regressions from the version 3.7.0
release. Specifically, it avoids n+1 issues when loading Orderables, improved updating requisitions, and reduced
the loading of FTAPS.

* Configuration Improvements Administrators can now quickly assign user roles based on another user, rather
than having to manually recreate all the role assignments. This specific feature is one of many that will be
worked on in future releases as we continue to simplify the overall system configuration.

Reference the 3.8 epics for more details.
Changes to Existing Functionality

See all 3.8 issues tagged ‘UIChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance
The performance of version 3.8.0 is overall an improvement from version 3.7.0 and starts to address the performance
regressions that came with that release.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.5, 3.6, 3.7, and 3.8 using the same test data.

1.1. Release Notes 35

https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.8%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.8%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.8%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.8%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times for versions 3.5 through 3.8

50

40

30

20

W:s W36 W37 W8

Test Coverage

OpenLMIS 3.8.0 was tested using the established OpenLMIS Release Candidate process. As part of this process, full
manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during the
release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.8.0. Manual tests were conducted using a set of 99 Zephyr tests tracked in Jira and 7 manual tests for

reporting. Only a single non-critical bug was found during testing! For more details about test executions and bugs
found for this release please see the 3.8 QA Release and Bug Triage wiki page.

All Changes by Component

Version 3.8.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.2.0

Auth CHANGELOG

CCE Service 1.1.0

CCE CHANGELOG

Fulfillment Service 8.1.0

Fulfillment CHANGELOG

36 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/590577712/3.8+QA+Release+Bug+Triage+status
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Notification Service 4.2.0

Notification CHANGELOG

Reference Data Service 15.0.0

ReferenceData CHANGELOG

Report Service 1.1.4

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.1.1 version to build additional reports.

Report CHANGELOG

Requisition Service 8.2.1

Requisition CHANGELOG

Stock Management 5.0.1

Stock Management CHANGELOG

Reference Ul 5.1.6

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.6.1

ReferenceData-UI CHANGELOG

Auth-Ul 6.2.2

Auth-UI CHANGELOG

CCE-UI 1.0.5

CCE-UI CHANGELOG

1.1. Release Notes 37

https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment-Ul 6.0.5

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.2

Report-UI CHANGELOG

Requisition-Ul 7.0.1

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.5

Stock Management-Ul CHANGELOG

Ul-Components 7.2.1

UI-Components CHANGELOG

Ul-Layout 5.1.5

Ul-Layout CHANGELOG

Dev Ul 9.0.1

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

38 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.9 3.7.0 Release Notes - October 18, 2019

Status: Stable

3.7.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.7.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

For a full list of features and bug-fixes since 3.6.0, see OpenLMIS 3.7.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility
Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas

include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.7.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLLMIS Reference Distribution 3.7.0

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenLLMIS
3.7.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

1.1. Release Notes 39

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.7%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.7.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.7%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.7%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs

OpenLMIS Documentation, Release 3.0

New Features

The OpenLMIS community proudly presents the following new features with 3.7.0:

¢ Administrative Messages Administrators and users with the appropriate access can now create administrative
messages that are displayed to all users on the system dashboard. These messages can be displayed indefinitely
or set to expire on a specific date.

¢ Updatable Orderables Orderables (ie, Products) can now be updated directly from within the associated ad-
ministration page. Previously, most updates to orderables had to be performed by directly updating the database
but this new feature will bring the ability to safely change orderables to users with the appropriate access. This
feature leverages work done for version 3.6 to automatically version Orderables so that historical data remains
accurate, even after changes to orderables are made.

Reference the 3.7 epics for more details.
Changes to Existing Functionality

See all 3.7 issues tagged ‘UIChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance
The performance of version 3.7.0 does have some regressions compared to the previous version of OpenLMIS and
these regressions are expected to be addressed in the next release.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.4, 3.5, and 3.7 using the same test data.

Ul Performance: Loading times for versions 3.4 through 3.7

50

40

R Nl o s & & o o T 8 o e e

o o P o b o PAS e i - ne) A\

w?® > 2% 2@ “\Y\Cﬁ o 2 7@ o wo@_ i G p? . o®
R \;\\\‘3 L)

W34 W35 W36 W37

40 Chapter 1. Contents:

https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20AND%20fixVersion%20%3D%203.7%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.6%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Test Coverage

OpenLLMIS 3.7.0 was tested using the established OpenLMIS Release Candidate process. As part of this process, full
manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during the
release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final
version 3.7.0. Manual tests were conducted using a set of 99 Zephyr tests tracked in Jira and 7 manual tests for

reporting. A total of 34 bugs were found during testing. For more details about test executions and bugs found for this
release please see the 3.7 QA Release and Bug Triage wiki page.

All Changes by Component

Version 3.7.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.2.0

Auth CHANGELOG

CCE Service 1.1.0

CCE CHANGELOG

Fulfillment Service 8.1.0

Fulfillment CHANGELOG

Notification Service 4.2.0

Notification CHANGELOG

Reference Data Service 14.0.0

ReferenceData CHANGELOG

Report Service 1.1.4

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.1.1 version to build additional reports.

Report CHANGELOG

1.1. Release Notes 41

https://openlmis.atlassian.net/wiki/spaces/OP/pages/578748478/3.7+QA+Release+Bug+Triage+status
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Requisition Service 8.2.0

Requisition CHANGELOG

Stock Management 5.0.1

Stock Management CHANGELOG

Reference Ul 5.1.5

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. Ul modules

included in the Reference Ul are:

Reference Data-Ul 5.6.0

ReferenceData-UIl CHANGELOG

Auth-Ul 6.2.1

Auth-UI CHANGELOG

CCE-Ul 1.0.4

CCE-UI CHANGELOG

Fulfillment-Ul 6.0.4

Fulfillment-Ul CHANGELOG

Report-Ul 5.2.1

Report-UI CHANGELOG

Requisition-Ul 7.0.0

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.4

Stock Management-Ul CHANGELOG

42

Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Ul-Components 7.2.0

UI-Components CHANGELOG

Ul-Layout 5.1.4

Ul-Layout CHANGELOG

Dev Ul 9.0.1

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image
* Docker scalyr image
Contributions
Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and

documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.10 3.6.0 Release Notes - May 16, 2019

Status: Stable

3.6.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

1.1. Release Notes 43

https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr
http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017

OpenLMIS Documentation, Release 3.0

Release Notes

The OpenLMIS Community is excited to announce the 3.6.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenL.MIS
implementers. This release concludes the work being done as part of the Gap Project and continues adding more func-
tionality to reduce the gap in features between different versions of OpenLMIS. The development of the Gap Project
features and tasks have been a collaborative effort involving four separate organizations (VillageReach, SolDevelo,
JSI, and Ona) and we are thankful to all these participants for their work on the 3.6 release.

For a full list of features and bug-fixes since 3.5.0, see OpenLLMIS 3.6.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.6.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.6.0

Known Bugs
Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.6.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community proudly presents the following new features with 3.6.0:

¢ DHIS2 Report Generation OpenLMIS now supports the automatic generation of certain DHIS2 reports. This
is an important first step towards being able to automatically send report data to a DHIS2 server, a feature which
will be coming with or before the release of version 3.7.

* Multiple Suppliers Requisitions can be now be split and fulfilled by multiple suppliers. This work was started
in version 3.5 and has now been completed with version 3.6.

* Notification Improvements A notification digest, a single notification containing information from multiple
individual notifications, can now be sent for certain types of frequent notifications and we have also added the
ability to send notifications via SMS as well as email.

44 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/wiki/spaces/OP/pages/105578547/Gap+Analysis+eLMIS+Tanzania+Zambia+and+OpenLMIS+3.x
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.6%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.6.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.6%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.6%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs

OpenLMIS Documentation, Release 3.0

* Kit Products and Kit Breakdown Kit products, that is a product which contains other products, can now be
defined within the system and treated like any other product. Facilities also have the ability to “unpack” a kit
and include the contained items in their local stock.

* Requisition Performance Improvements Some significant work has gone into improving the overall perfor-
mance of the requisition API’s which is something that we will continue to focus on for each subsequent release.

Reference the 3.6 epics for more details.

Changes to Existing Functionality

See all 3.6 issues tagged ‘UlChange’ in Jira.

API Changes

API changes can be found in each service CHANGELOG.md file, found in the root directory of the service repository.

Performance

The performance of version 3.6.0 has some significant performance improvements to previous versions of OpenLMIS,
particularly during the login and initiate proceed processes. Most other processes have performance figures that are
similar to version 3.5 with the exception of the convert to order processes, which have seen an overall regression.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the Ul loading times in seconds for 3.3, 3.4, 3.5, and 3.6 using the same test data.

Ul Performance: Loading times for versions 3.3 through 3.6

60

40

JUu dhljh thJ

Nl 25 & ol
e & & ol WS &
_;3(‘» Ao 'u(o F) \L@\A

e R i 2% 3 AF
o o i I o af ;:ﬁ‘ @\5-

o off o e

PO

W33 B34 35 W 36

Test Coverage

OpenLMIS 3.6.0 was tested using the established OpenLMIS Release Candidate process. As part of this process, full
manual test cycles were executed for each release candidate published. Any critical or blocker bugs found during the
release candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final

1.1. Release Notes 45

https://openlmis.atlassian.net/issues/?filter=20614&jql=issuetype%20%3D%20Epic%20AND%20status%20in%20(Done%2C%20%22In%20Progress%22)%20and%20fixVersion%20%3D%203.6%20ORDER%20BY%20created%20DESC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.6%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

version 3.6.0. Manual tests were conducted using a set of 99 Zephyr tests tracked in Jira and 7 manual tests for
reporting. A total of 18 bugs were found during testing. For more details about test executions and bugs found for this
release please see the 3.6 QA Release and Bug Triage wiki page.

All Changes by Component

Version 3.6.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

TODO

Auth Service 4.1.2

Auth CHANGELOG

CCE Service 1.0.3

CCE CHANGELOG

Fulfillment Service 8.0.2

Fulfillment CHANGELOG

Notification Service 4.1.0

Notification CHANGELOG

Reference Data Service 13.0.0

ReferenceData CHANGELOG

Report Service 1.1.3

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.1.1 version to build additional reports.

Report CHANGELOG

Requisition Service 8.0.0

Requisition CHANGELOG

46 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/523501646/3.6+QA+Release+Bug+Triage+status
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Stock Management 4.1.0

Stock Management CHANGELOG

Reference Ul 5.1.4

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules

included in the Reference Ul are:

Reference Data-Ul 5.5.0

ReferenceData-UIl CHANGELOG

Auth-Ul 6.2.0

Auth-UI CHANGELOG

CCE-UI 1.0.2

CCE-UI CHANGELOG

Fulfillment-Ul 6.0.3

Fulfillment-UI CHANGELOG

Report-Ul 5.2.0

Report-Ul CHANGELOG

Requisition-Ul 6.0.0

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.2

Stock Management-Ul CHANGELOG

Ul-Components 7.1.0

UI-Components CHANGELOG

1.1. Release Notes

47

https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Ul-Layout 5.1.2

Ul-Layout CHANGELOG

Dev U1 9.0.0

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.11 3.5.0 Release Notes - 13 December 2018

Status: Stable

3.5.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.5.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers. This release was a major milestone in the the Gap Project and adds more functionality to reduce
the gap in features between different versions of OpenLMIS. We are excited to announce that four organizations
collaboratively worked on the 3.5 release!

For a full list of features and bug-fixes since 3.4.1, see OpenLMIS 3.5.0 Jira tickets.

48 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr
http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/wiki/spaces/OP/pages/105578547/Gap+Analysis+eLMIS+Tanzania+Zambia+and+OpenLMIS+3.x
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.5%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC

OpenLMIS Documentation, Release 3.0

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.5.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.5.0

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.5.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

The OpenLMIS community proudly presents the following new features with 3.5.0:

New in application reporting metrics, visualizations and tooling! To see a in-depth demo of the reporting tooling
and capabilities, please reference the OpenLMIS YouTube channel) for a short video. Please note that the data
is for development purposes only and not reflective of real data.

Configuring OpenLMIS to support multiple suppliers for one facility based on specific products.
Support the mCSD profile for facilities to allow for OpenLMIS to subscribe to a Facility Registry.

Allow Average Consumption to calculate the order quantities for Stock Based Requisitions, which are requisi-
tions automatically populated by stock transactions recorded in the stock management service.

A new possible column for requisitions to capture the additional stock needed for new patients, which impacts
the calculated order quantity.

Ability to configure the Packs to Ship column to show up during the approval step to support users in seeing the
number of packs to be ordered based on the dispensing unit.

New functional tests, testing strategy and process improvements to support the team in releasing faster and
moving towards more automatization!

Reference the 3.5 epics for more details.

1.1. Release Notes 49

https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.5.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.5%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.5%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://www.youtube.com/watch?v=TyG2AmePtHg
https://wiki.ihe.net/index.php/Mobile_Care_Services_Discovery_(mCSD)
https://github.com/OpenLMIS/openlmis-functional-tests
http://docs.openlmis.org/en/latest/conventions/testing.html
https://openlmis.atlassian.net/issues/?filter=20626

OpenLMIS Documentation, Release 3.0

Changes to Existing Functionality

See all 3.5.0 issues tagged ‘UIChange’ in Jira.

API Changes
Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

¢ Fulfillment Service v8.0.0 - fulfillment changelog

— Refactored /api/orderFileTemplate API into /api/fileTemplate that persists config for both order and
shipment templates.

— Updated Transfer properties so that it can also be used to persist transfer properties for shipment files
imports.

* Reference Data Service v12.0.0 - ref-data changelog

Removed DELETE /api/processingPeriods/{id} endpoint

Removed GET /api/users/{id}/supervisedFacilities endpoint

Changed supervisory node structure

Removed login restricted from the User model
* Stock Management Service v4.0.0 - stockmanagement changelog

— Can’t change type or category for stock card line item reason on update.
¢ UI Components Service v7.0.0 - ui-components changelog

— Changed syntax for using sort component.

Performance

Overall, the performance of version 3.5.0 improves upon the 3.4.0 release. Significant improvements have been seen
in the requisition submission, authorization, approval, and convert to order processes; with slight regressions in the
initial load and initiate requisition processes.

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page.

The following chart displays the 3.5.0 Ul loading times in seconds for 3.3.0, 3.4.0, and 3.5.0 using the same test data.

50 Chapter 1. Contents:

https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.5%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times for versions 3.3.0, 3.4.0, and 3.5.0

60

40

20

W 330 M 340 M 350

Test Coverage

OpenLMIS 3.5.0 was tested using the Release Candidate process. As part of this process, full manual test cycles were
executed for each release candidate published. Any critical or blocker bugs found during the release candidate were
resolved in a bug fix cycle with a full manual test cycle executed before releasing the final version 3.5.0. Manual tests

were conducted using a set of 107 Zephyr tests tracked in Jira and 6 manual tests for reporting. A total of 16 bugs
were found during testing. For more details about test executions and bugs found for this release please see this wiki

page.

All Changes by Component

Version 3.4.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.1.0

Auth CHANGELOG

CCE Service 1.0.2

CCE CHANGELOG

Fulfillment Service 8.0.0

Fulfillment CHANGELOG

1.1. Release Notes 51

https://openlmis.atlassian.net/wiki/spaces/OP/pages/463110325/3.5+Regression+and+Release+Candidate+Test+Plan
https://openlmis.atlassian.net/wiki/spaces/OP/pages/463110325/3.5+Regression+and+Release+Candidate+Test+Plan
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Notification Service 4.0.1

Notification CHANGELOG

Reference Data Service 12.0.0

ReferenceData CHANGELOG

Report Service 1.1.2

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.1.1 version to build additional reports.

Report CHANGELOG

Requisition Service 7.1.0

Requisition CHANGELOG

Stock Management 4.0.0

Stock Management CHANGELOG

Reference Ul 5.1.2

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.5.0

ReferenceData-UI CHANGELOG

Auth-U1 6.1.3

Auth-UI CHANGELOG

CCE-UI 1.0.2

CCE-UI CHANGELOG

52 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment-Ul 6.0.2

Fulfillment-Ul CHANGELOG

Report-Ul 5.1.0

Report-UI CHANGELOG

Requisition-Ul 5.5.0

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.2

Stock Management-Ul CHANGELOG

Ul-Components 7.0.0

UI-Components CHANGELOG

Ul-Layout 5.1.2

Ul-Layout CHANGELOG

Dev Ul 8.1.0

The Dev-Ul CHANGLOG

Components with No Changes

The components that have not changed are:

¢ Service Util

* Logging Service

* Consul-friendly distribution of nginx

* Docker Postgres 9.6-postgis image

* Docker scalyr image

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

1.1. Release Notes

53

https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.12 3.4.1 Patch Release Notes - 10 October 2018

Status: Stable with disclaimer

The 3.4.1 patch release is recommended for users of OpenLMIS version 3.4.0 and includes fixes for the delayed login
process when using the Firefox browser and enabling the update of offline requisitions.

Disclaimer: The 3.4.1 Patch release does not contain any known blocking bugs. Full regression testing and manual
performance testing was not conducted as part of the patch release.

Patch Release Notes

3.4.1 Patch Release contains the bug fixes for - OLMIS-5235 - OLMIS-5502

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Compatible with OpenLMIS 3.4.0

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.4.1 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLLMIS Reference Distribution 3.4.1

54 Chapter 1. Contents:

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/browse/OLMIS-5235
https://openlmis.atlassian.net/browse/OLMIS-5502
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.4.1

OpenLMIS Documentation, Release 3.0

Known Bugs

No known additional bugs were included in this patch release. Bug reports are collected in Jira for troubleshooting,
analysis and resolution on an ongoing basis. See OpenLMIS 3.4.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.
New Features

No new features were introduced with this patch release.

Changes to Existing Functionality

Version 3.4.1 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

e OLMIS-5235: Performance issue after login using Firefox
* OLMIS-5502: No ‘Update Requisiton’ button after offline mode

Performance

No manual performance testing was conducted for this patch release.

Test Coverage

Manual regression tests were conducted using a set of 139 Zephyr tests tracked in Jira. One bug was found and
resolved during testing. See the test cycle for all regression test case executions for this patch release: 3.4.1 Patch
Release Test Plan and Execution.

Component Version Numbers

Version 3.4.1 of the Reference Distribution contains the following components and versions listed below. The Ref-
erence Distribution bundles these components together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.0.0

CCE Service 1.0.1
Fulfillment Service 7.0.1
Notification Service 4.0.0

Reference Data Service 11.0.0

1.1. Release Notes 55

https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.4%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/browse/OLMIS-5235
https://openlmis.atlassian.net/browse/OLMIS-5502
https://openlmis.atlassian.net/wiki/spaces/OP/pages/448201065/Patch+Release+Test+Plan+v3.4.1
https://openlmis.atlassian.net/wiki/spaces/OP/pages/448201065/Patch+Release+Test+Plan+v3.4.1
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html

OpenLMIS Documentation, Release 3.0

Report Service 1.1.1

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.1.1 version to build additional reports.

Requisition Service 7.0.1
Stock Management 3.1.0
Reference Ul 5.1.0

The Reference Ul is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference UI is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference Ul are:

Reference Data-Ul 5.4.1

ReferenceData-UIl CHANGELOG

Auth-Ul 6.1.2

Auth-UI CHANGELOG

CCE-Ul 1.0.1
Fulfillment-Ul 6.0.1
Report-Ul 5.0.6
Requisition-Ul 5.5.0

Requisition-Ul CHANGELOG

Stock Management-Ul 2.0.1

Stock Management-Ul CHANGELOG

Ul-Components 6.0.1

UI-Components CHANGELOG

56 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Ul-Layout 5.1.1

Dev Ul v8

1.1.13 3.4.0 Release Notes - 17 August 2018

Status: Stable

3.4.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.4.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers. It is also the first release since the Gap Project has started. We are excited to announce that four
organizations collaboratively worked on the 3.4 release!

For a full list of features and bug-fixes since 3.3.1, see OpenLMIS 3.4.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility
Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas

include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.4.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.4.0

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.4.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

1.1. Release Notes 57

https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/wiki/spaces/OP/pages/105578547/Gap+Analysis+eLMIS+Tanzania+Zambia+and+OpenLMIS+3.x
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.4%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.4.0
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.4%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Bug%20AND%20affectedVersion%20%3D%203.4%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs

OpenLMIS Documentation, Release 3.0

New Features

3.4 offers a wide range of new features and enhancements:

Reporting: The new reporting infrastructure is dockerized and deployed within the OpenLMIS deployment. See the
Reporting service for more details.

Requisitions:

» Configurable templates for one-click requisitions based on current stock on hand records within stock manage-
ment. We call this a stock based requisition.

Ability to hide and add new products to improve end user usability.

* Ability to convert requisitions without creating an order.

* New R&R column to account for “additional quantities” from new demand.
Orders: New FTP retry feature when orders fail to transmit initially.
User Management:

* New “opting out” feature for email notifications.

* Improving the user profile so that users can manage their own data.

* New reset password options.

» New user profile information (roles and rights).

Notifications: Redesigned to support more personalization and future work on supporting more channels.

Changes to Existing Functionality

See all 3.4.0 issues tagged ‘UIChange’ in Jira.

API Changes
Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

* Authentication Service v4.0.0 - Changes to the user resource structure: auth changelog

* Notification Service v4.0.0 - Changes to the user contact details resource and the /api/notification endpoint:
notification changelog

» Reference Data Service v11.0.0 - Changes to the user resource structure: ref-data changelog

* Requisition Service v7.0.0 - Changes to the periodsForlnitiate endpoint: requisition changelog

» Stock Management UI Service v3.1.0 - Renamed admin-reason-modal module: stockmanagement changelog
» UI Components Service v6.0.0 - Changed syntax for using datepicker: ui-components changelog

* Dev-UI Service v8.0.0 - Replaced syncTransifex grunt option: dev-ui changelog

Performance

There are minor regressions in the sync, submit, authorize and single approve within the requisition service with slight
improvements in convert to order.

58 Chapter 1. Contents:

https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.4%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the test
results and process, please see this wiki page. For more details about the specific work done to improve performance
for 3.4.0, please reference this list of tasks.

The following chart displays the 3.4.0 UI loading times in seconds for both 3.3.1 and 3.4.0 using the same test data.

Ul Performance: Loading times from 3.3.0 to 3.4.0

60

W 330 W 340

Test Coverage

OpenLMIS 3.4.0 is the second release using the new Release Candidate process. As part of this process, full manual
test cycles were executed for each release candidate published. Any critical or blocker bugs found during the release
candidate were resolved in a bug fix cycle with a full manual test cycle executed before releasing the final version

3.4.0. Manual tests were conducted using a set of 142 Zephyr tests tracked in Jira. A total of 34 bugs were found
during testing. See the spreadsheet of all test executions for this release: 3.4.0 release test case executions.csv.

All Changes by Component

Version 3.4.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 4.0.0

Auth CHANGELOG

CCE Service 1.0.1

CCE CHANGELOG

1.1. Release Notes 59

https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Task%20AND%20status%20%3D%20Done%20AND%20fixVersion%20%3D%203.4%20AND%20labels%20%3D%20Performance%20AND%20text%20~%20%22performance%22%20ORDER%20BY%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html#release-process
https://github.com/OpenLMIS/openlmis-ref-distro/blob/master/docs/source/releases/3.4%20Release%20test%20case%20executions.csv
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Fulfillment Service 7.0.1

Fulfillment CHANGELOG

Notification Service 4.0.0

Notification CHANGELOG

Reference Data Service 11.0.0

ReferenceData CHANGELOG

Report Service 1.1.1

This service is intended to provide reporting functionality for other components to use. Built-in reports in OpenLMIS
3.4.0 are still powered by their own services. In future releases, they may be migrated to a new version of this
centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.1.1 version to build additional reports.

Report CHANGELOG

Requisition Service 7.0.0

Requisition CHANGELOG

Stock Management 3.1.0

Stock Management CHANGELOG

Reference Ul 5.1.0

The Reference UI is the web-based user interface for the OpenLMIS Reference Distribution. This user interface is
a single page web application that is optimized for offline and low-bandwidth environments. The Reference Ul is
compiled together from module UI modules using Docker compose along with the OpenLMIS dev-ui. UI modules
included in the Reference UI are:

Reference Data-Ul 5.4.0

ReferenceData-UI CHANGELOG

Auth-Ul 6.1.1

Auth-UI CHANGELOG

60 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

CCE-UI 1.0.1

CCE-UI CHANGELOG

Fulfillment-Ul 6.0.1

Fulfillment-Ul CHANGELOG

Report-Ul 5.0.6

Report-UI CHANGELOG

Requisition-Ul 5.4.0

Requisition-Ul CHANGELOG

Stock Management-Ul 3.1.0

Stock Management-Ul CHANGELOG

Ul-Components 6.0.0

UI-Components CHANGELOG

Ul-Layout 5.1.1

Ul-Layout CHANGELOG

Dev Ul v8

The Dev Ul developer tooling has advanced to v8.

Components with No Changes

The components that have not changed are:
* Service Util
* Logging Service
* Consul-friendly distribution of nginx
* Docker Postgres 9.6-postgis image

* Docker scalyr image

1.1. Release Notes

61

https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr

OpenLMIS Documentation, Release 3.0

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

Please see the Implementer Toolkit on the OpenLMIS website to learn more about best practicies in implementing
OpenLMIS. Also, learn more about the OpenLMIS Community and how to get involved!

1.1.14 3.3.1 Patch Release Notes - 17 July 2018

Status: Stable with disclaimer
3.3.1 Patch release is recommended for users of OpenLMIS version 3.3.0 because the patch inclues a bug fix for

requisition statuses when saved concurrently. Disclaimer: The 3.3.1 Patch release does not contain any known blocking
bugs. Full regression testing and manual performance testing was not conducted as part of the patch release.

Patch Release Notes

3.3.1 Patch Release contains the bug fix for - OLMIS-4728.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Compatible with OpenLMIS 3.3.0

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.3.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

62 Chapter 1. Contents:

http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/browse/OLMIS-4728
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017

OpenLMIS Documentation, Release 3.0

Download or View on GitHub

OpenLMIS Reference Distribution 3.3.1

Known Bugs

No known additional bugs were included in this patch release. Bug reports are collected in Jira for troubleshooting,
analysis and resolution on an ongoing basis. See OpenLMIS 3.3.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.
New Features

No new features were introduced with this patch release.

Changes to Existing Functionality

Version 3.3.1 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

e OLMIS-4728: Requisition’s properties can be overwritten when saved concurrently.
Performance

No manual performance testing was conducted for this patch release.

Test Coverage

Manual regression tests were conducted using a set of 30 Zephyr tests tracked in Jira. One bug was found and resolved
during testing. See the test cycle for all regression test case executions for this patch release: 3.3.1 Patch Release Test
Plan and Execution.

Component Version Numbers

Version 3.3.1 of the Reference Distribution contains the following components and versions listed below. The Ref-
erence Distribution bundles these components together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.2.0
CCE Service 1.0.0
Fulfillment Service 7.0.0

Notification Service 3.0.5

1.1. Release Notes 63

https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.3.1
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.3%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/browse/OLMIS-4728
https://openlmis.atlassian.net/wiki/spaces/OP/pages/413991014/Patch+Release+Test+Plan+v3.3.1
https://openlmis.atlassian.net/wiki/spaces/OP/pages/413991014/Patch+Release+Test+Plan+v3.3.1
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html

OpenLMIS Documentation, Release 3.0

Reference Data Service 10.0.0
Reference Ul 5.0.7

The Reference UI (https://github.com/OpenL.MIS/openlmis-reference-ui/) is the web-based user interface for the
OpenLMIS Reference Distribution. This user interface is a single page web application that is optimized for offline
and low-bandwidth environments. The Reference Ul is compiled together from module UI modules using Docker
compose along with the OpenLMIS dev-ui. UI modules included in the Reference Ul are:

auth-ui 6.1.0

cce-ui 1.0.0
fulfillment-ui 6.0.0
referencedata-ui 5.3.0
report-ui 5.0.5
requisition-ui 6.1.0
stockmanagement-ui 1.1.0
ui-components 5.3.0
ui-layout 5.1.0

Dev Ul v7

Report Service 1.0.1

This service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report: the Facility Assignment Configuration Errors report
(OLMIS-2760).

Additional built-in reports in OpenLMIS 3.3.1 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.0.1 version to build additional reports.

Requisition Service 6.0.0

Stock Management 3.0.0

64 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-reference-ui/
https://openlmis.atlassian.net/browse/OLMIS-2760

OpenLMIS Documentation, Release 3.0

Service Util 3.1.0

1.1.15 3.3.0 Release Notes - 27 April 2018

Status: Stable

3.3.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.3.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenL.MIS
implementers.

3.3.0 includes a wide range of new features and functionality. The majority of the features were defined as the Minimal
Viable Product (MVP), or minimum feature set, to support countries in managing their immunization supply chain by
a group of key immunization stakeholders and OpenLMIS community members. Key features include managing cold
chain equipment (CCE) inventory, integrating with a Remote Temperature Monitoring (RTM) platform, calculating
reorder amounts based on targets, fulfilling orders, and receiving commodities into inventory based on shipments. See
the New Features section for details.

For a full list of features and bug-fixes since 3.2.1, see OpenLMIS 3.3.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

The requisition service introduced, OLMIS-3929: View and edit multiple requisition templates per program, which
requires a manual data migration explained here.

The fulfillment service has a major release due to the additional features in fulfilling orders within OpenLMIS. Please
review the fulfillment service changelog in detail to ensure a clear understanding of the breaking changes.

The reference data service uses new rights associated with the new proof of delivery functionality. Please review the
changlog for the Reference data service in detail to ensure a clear understanding of the breaking changes related to
rights.

Batch Requisition Approval: The Batch Approval screen, which was improved in OpenLMIS 3.2.1, is still not
officially supported. The UI screen is disabled by default. Implementations can override the code in their local
customizations in order to use the screen. Further performance improvements are needed before the screen is officially
supported. See OLMIS-3182 and the tickets linked to it for details.

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

1.1. Release Notes 65

https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.3%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
https://openlmis.atlassian.net/browse/OLMIS-3929
https://github.com/OpenLMIS/openlmis-requisition-template-migration
https://openlmis.atlassian.net/browse/OLMIS-3182

OpenLMIS Documentation, Release 3.0

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.3.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.3.0

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenL.MIS
3.3.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

OpenLMIS 3.3.0 contains the following features, the majority are specific to the Vaccine Module MVP Features, were
completed by the OpenLMIS development team:

Vaccine stock based requisitions that allow users to populate a requisition based on current stock levels and
forecasted demand targets or ideal stock amounts.

Enhancements to support stock management for vaccines.

Order fulfillment, sometimes referred to as the process of resupplying supervised facilities. Includes support
for configuring some facilities to have orders fulfilled within OpenLMIS and others sending orders to external
suppliers like a National Store or third party supplier. Supports using the ideal product model, ordering using
commodity types and fulfilling using Tradeltems, to enable end-to-end visibility.

Receiving stock into inventory, using an electronic Proof of Delivery based on the shipment details created in
OpenLMIS.

Forecasting and Estimation features to upload forecasted demand targets and use those targets to calculate
reorder amounts.

Official release of the Cold Chain Equipment (CCE) service and includes a new feature displaying active alerts
on specific pieces of equipment inventory using a standards based interoperability with a Remote Temperature
Monitoring (RTM) platform.

Administration screens included assigning requisition templates to facility types within a program, view and
create facility types, and manage API keys.

The analytics infrastructure and DISC indicators were developed and deployed in a new open-source stack. By
the 3.3 release, this technology infrastructure is not deployed within our dockerized microservice architecture.
We can provide access to the demo environment for showcasing and will focus on deploying in docker for the
next release.

The following Pull Requests were contributed by community members:

Reference Data and Reference Data Ul OLMIS-3448
Reference Data OLMIS-4337

66

Chapter 1. Contents:

http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.3.0
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.3%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.3%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/browse/OLMIS-4059
https://openlmis.atlassian.net/browse/OLMIS-1293
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670474/Local+Fulfillment
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670483/Receiving+stock
https://openlmis.atlassian.net/browse/OLMIS-1294
https://openlmis.atlassian.net/browse/OLMIS-4067
https://openlmis.atlassian.net/browse/OLMIS-3448
https://openlmis.atlassian.net/browse/OLMIS-4337

OpenLMIS Documentation, Release 3.0

* Requisition OLMIS-4383

Changes to Existing Functionality
Version 3.3.0 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

e OLMIS-3949: The redesign of emergency requisitions made large UI and API changes. Emergency requisi-
tions now use a simplified template with limited columns. Please ensure to review all relevant documentation
to understand the decision making, which went through the product committee, and major UI changes to alert
relevant users.

e OLMIS-3929: View and edit multiple requisition templates per program.

e OLMIS-3166: Add user control for AppCache. Users can see their build number and update their web page
application to the latest build.

e OLMIS-3877: Ul filter component is consistent across pages.
e OLMIS-4026: Changed table styles to support order fulfillment complexity.
See all 3.3.0 issues tagged ‘UIChange’ in Jira.

API Changes

Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

* Requisition service has a major release, v6.0.0, due to the redesign of emergency requisitions. See the Requisi-
tion changelog for details.

« Fulfillment service has a major release, v7.0.0, due to significant changes in the data model for orders, shipments
and proofs of delivery. See the Fulfillment changelog for details.

» Reference data service has a major release, v10.0.0, due to changes for pagination, filtering and rights. See the
Reference data changelog for details.

» Stock management service has a major release, v3.0.0, due to significant changes to stock events and physical
inventory data. See the Stock management changelog for details.

Performance

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the
test results and process, please see this wiki page for details. There are minor improvements in the sync, submit,
authorize and single approve within the requisition service. For more details about the specific work done to improve
performance for 3.3.0, please reference this list of tasks.

The following chart displays the 3.3.0 UI loading times in seconds for both 3.2.1 and 3.3.0 using the same test data.

1.1. Release Notes 67

https://openlmis.atlassian.net/browse/OLMIS-4387
https://openlmis.atlassian.net/browse/OLMIS-3949
https://openlmis.atlassian.net/wiki/spaces/OP/pages/199655438/PC+January+30+2018
https://openlmis.atlassian.net/browse/OLMIS-3929
https://openlmis.atlassian.net/browse/OLMIS-3166
https://openlmis.atlassian.net/browse/OLMIS-3877
https://openlmis.atlassian.net/browse/OLMIS-4026
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.3%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Task%20AND%20status%20%3D%20Done%20AND%20fixVersion%20%3D%203.3%20AND%20labels%20%3D%20Performance%20AND%20text%20~%20%22performance%22%20ORDER%20BY%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times from 3.2.1 t0 3.3.0

125

100

0

Test Coverage

OpenLLMIS 3.3.0 is the second release using the new Release Candidate process. As part of this process, a full manual
regression test cycle was conducted, and multiple release candidates were published to address critical bugs before
releasing the final version 3.3.0.

Manual tests were conducted using a set of 136 Zephyr tests tracked in Jira. A total of 50 bugs were found during
testing. The full set of tests were executed on the third Release Candidate (RC3). With previous release candidates
(RCI and RC2), only the first phase of testing was conducted. See the spreadsheet of all regression test executions for
this release: 3.3.0-regression-tests.csv.

OpenLMIS 3.3.0 also includes a large set of automated tests. There are multiple types of tests, including Unit Tests,
Integration, Component, Contract and End-to-End. These tests exist in the API services in Java as well as in the
JavaScript UI web application. See the Testing Guide.

For OpenLMIS 3.3.0, here are a few key statistics on automated tests:

* There are 2,665 unit tests in the API services in Java, not including other types of tests nor tests in the Javascript
UI application. Sonar counts unit tests on each Java component.

* Test coverage is over 60 % for all components, both Java and JavaScript, and is over 80% for many components.
Sonar tracks test coverage and fails

quality gates if developers contribute new code with less than 80% coverage.

All of the automated tests, both Java and Javascript tests of all types, are passing as of the time of the release. Any
failing test would stop the build and block a release.

Further advances in automated testing are still on the horizon for future releases of OpenLMIS:

* Automated performance tests: There is already an automated test tool that measures the speed of API endpoints
with a large set of performance test data. However, not all tests pass and there is not an established baseline
for performance/speed of all areas of the system. Achieving this will greatly improve the objective means for
tracking and improving performance.

* End-to-end testing: There is already an end-to-end testing toolset. However, coverage is very low. The addition
of more end-to-end automated tests can reduce the manual test effort that is currently required for each release.
It can help developers identify and fix regressions so the community can move towards a “continuous delivery”
release process.

68 Chapter 1. Contents:

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html#release-process
https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/docs/source/releases/3.3.0-regression-tests.csv
http://docs.openlmis.org/en/latest/conventions/testing.html
http://sonar.openlmis.org/projects
http://sonar.openlmis.org/projects

OpenLMIS Documentation, Release 3.0

All Changes by Component

Version 3.3.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.2.0

Source: Auth CHANGELOG

CCE Service 1.0.0

This is the first stable release of openlmis-cce.

Source: CCE CHANGELOG

Fulfillment Service 7.0.0

Source: Fulfillment CHANGELOG

Notification Service 3.0.5

Source: Notification CHANGELOG

Reference Data Service 10.0.0

Source: ReferenceData CHANGELOG

Reference Ul 5.0.6

The Reference UI (https://github.com/OpenL.MIS/openlmis-reference-ui/) is the web-based user interface for the
OpenLMIS Reference Distribution. This user interface is a single page web application that is optimized for offline
and low-bandwidth environments. The Reference Ul is compiled together from module UI modules using Docker
compose along with the OpenLMIS dev-ui. Ul modules included in the Reference Ul are:

auth-ui 6.1.0

See openlmis-auth-ui CHANGELOG

cce-ui 1.0.0

This is the first stable release of openlmis-cce-ui; it provides CCE inventory management and administration screens
that work with the openlmis-cce service APIs.

See: openlmis-cce-ui CHANGELOG

1.1. Release Notes 69

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

fulfillment-ui 6.0.0

See openlmis-fulfillment-ui CHANGELOG

referencedata-ui 5.3.0

See openlmis-referencedata-ui CHANGELOG

report-ui 5.0.5

See openlmis-report-ui CHANGELOG

requisition-ui 5.3.1

See openlmis-requisition-ui CHANGELOG

stockmanagement-ui 1.1.0

See openlmis-ui-components CHANGELOG

ui-components 5.3.0

See openlmis-ui-components CHANGELOG

ui-layout 5.1.0

See openlmis-ui-layout CHANGELOG

Dev Ul v7

The Dev Ul developer tooling has advanced to v7.

Report Service 1.0.1

This service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report: the Facility Assignment Configuration Errors report
(OLMIS-2760).

Additional built-in reports in OpenLMIS 3.3.0 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.0.1 version to build additional reports.

Source: Report CHANGELOG

70 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui
https://openlmis.atlassian.net/browse/OLMIS-2760
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Requisition Service 6.0.0

Source: Requisition CHANGELOG

Stock Management 3.0.0

Source: Stock Management CHANGELOG

Service Util 3.1.0

We now use an updated library for shared Java code called service-util.

Source: Report CHANGELOG

Components with No Changes

Other tooling components have not changed, including: the logging service, the Consul-friendly distribution of nginx,
the docker Postgres 9.6-postgis image, and the docker scalyr image.

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

We are excited to announce the release of the first iteration of the Implementer Toolkit on the OpenLMIS website.
Learn more about the OpenLMIS Community and how to get involved!

1.1.16 3.2.1 Release Notes - 15 November 2017

Status: Stable

3.2.1 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The release of 3.2.1 is primarily a bug-fix and performance release, with over 40 bugs fixed and over 20 other
improvements since 3.2.0 including major improvements in performance.

This release does include some new features; see the New Features section below.

See the Living Product Roadmap for information about future planned releases. Pull requests and contributions are
welcome.

1.1. Release Notes 71

https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-service-util
https://github.com/OpenLMIS/openlmis-service-util/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-scalyr
http://openlmis.org/get-started/implementer-toolkit/
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.2.1%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.2.1%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html

OpenLMIS Documentation, Release 3.0

Compatibility

Important! Stock Management data migration: OpenLMIS 3.2.1 introduces a new constraint that forces the adjust-
ment reasons to be unique within each requisition line item. This means that it will no longer be possible to have two
“expired” adjustments in a single product, eg. Expired: 20 and Expired: 30. It will still be possible to have different
adjustment reasons, eg. Expired: 20 and Lost: 30. The UI does not allow users to add the same adjustment reason
twice starting with OpenLMIS 3.2.1. Users should now provide a total value for a given adjustment reason.

Due to this change, it is necessary for any existing OpenLMIS implementations to migrate their stock adjustments
data to merge any duplicates. Implementations can do this manually before upgrading to 3.2.1, otherwise OpenLMIS
3.2.1 will apply a default migration automatically. The default migration automatically merge the duplicates by adding
together the quantities from the same adjustment reasons in each requisition line item. For instance, if a line item had
two adjustments with the same reason (Expired: 20 and Expired: 30), this will be replaced by a single adjustment
with the total (Expired: 50). We highly recommend that all implementations review their duplicate stock adjustments
manually and determine how they should be merged prior to upgrading to 3.2.1. The default migration may not be
valid for all the cases that can occur in real-world data.

Batch Requisition Approval: During work on OpenLMIS 3.2.1, further improvements to the Batch Approval screen
were made, but the feature is still not officially supported. The Ul screen is disabled. Implementations can override
the code in their local customizations in order to use the screen. Further changes to the screen are expected in future
releases before it is officially supported. See OLMIS-3182 for more info.

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.2.1 from OpenLMIS 3.0.x or 3.1.x, please review the 3.2.0 Release Notes for
important compatibility information.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.2.1

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution. See OpenLMIS 3.2.1 Bugs.
To report a bug, see Reporting Bugs.

New Features

OpenLMIS 3.2.1 contains these new features:
* Facility administration screens now support adding and editing facilities.

 User administration screens now provide filtering and more password reset options.

72 Chapter 1. Contents:

https://openlmis.atlassian.net/browse/OLMIS-3182
http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.2.1
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.2.1%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs

OpenLMIS Documentation, Release 3.0

* Demo data is significantly expanded, including for use in contract tests and performance tests.

e Vaccine MVP features including Ideal Stock Amount (ISA) management, printing of physical inventory counts
and additional work in Cold Chain Equipment (CCE) tracking (CCE features are released in a Beta version
which is not included in the 3.2.1 release).

 Contributions from the Malawi implementation, including a new Extension Point for customizing Order Num-
bers and deleting previously skipped requisitions.

Changes to Existing Functionality
Version 3.2.1 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

* OLMIS-3233: Ability to delete previously skipped Requisitions.

e OLMIS-3076: Datalntegrity ViolationException when trying to remove previous requisition / Average Period
Consumption should not calculate using Emergency requisition data. This change updates the rules about when
it is possible to delete older requisitions. It also changes how newer requisitions use past data to compute the
Average Period Consumption.

* OLMIS-3246: Ability to hide special reasons from Total Losses and Adjustments. This feature provides a new
configuration option so that administrators can hide selected reasons from end-users.

e OLMIS-3221 and OLMIS-3222: View Orders filtering by period start and end dates.

e OLMIS-2700: View Requisition enhancements. This includes new sort order controls and makes the Date
Initiated visible in the table.

e OLMIS-3449: Explanation field on Non-Full Supply is no longer mandatory.
See all 3.2.1 issues tagged ‘UIChange’ in Jira.

API Changes
Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

e OLMIS-3254: Unrestrict GET operations on certain reference data resources. This makes certain information
(EG, lists of all facilities and orderables) available for any user with a valid login token.

* OLMIS-3116: User DTO now returns home facility UUID instead of Facility object.

OLMIS-3105: User DTO now returns UUIDs instead of codes for role assignments.

OLMIS-3293: Paginate search facilityTypeApprovedProducts and made endpoint RESTful.

OLMIS-2732: Stock Management Physical Inventory API was redesigned to be RESTful (during work on this
ticket for print support).

Performance Improvements

Targeted performance improvements were made in the RESTful API services as well as in the UI application. The
improvements were chosen based on testing using a new performance data set and by manually testing with simulated
conditions (EG, network set to Slow 3G).

This chart shows a side-by-side comparison of the loading times for different actions in the Ul in version 3.2.1 (green)
compared to testing done in early October 2017 before improvements (blue).

1.1. Release Notes 73

https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/browse/OLMIS-3233
https://openlmis.atlassian.net/browse/OLMIS-3076
https://openlmis.atlassian.net/browse/OLMIS-3246
https://openlmis.atlassian.net/browse/OLMIS-3221
https://openlmis.atlassian.net/browse/OLMIS-3222
https://openlmis.atlassian.net/browse/OLMIS-2700
https://openlmis.atlassian.net/browse/OLMIS-3449
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.2.1%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/browse/OLMIS-3254
https://openlmis.atlassian.net/browse/OLMIS-3116
https://openlmis.atlassian.net/browse/OLMIS-3105
https://openlmis.atlassian.net/browse/OLMIS-3293
https://openlmis.atlassian.net/browse/OLMIS-2732

OpenLMIS Documentation, Release 3.0

Ul Performance: Loading times from Oct 2017 to 3.2.1-RC1

200

150

100

50

StartUp 1
Initiate 1

2 (TB)

2 (EM)

Sync (TB)
Sync (EM)
Submit (TB)
Submit (EM)
Authorize 1
2(TB)

2 (EM)
3(TB)
3(EM)
Approve 1
Batch 1
Convert 1
Manage POD 1
View Order 1

Il 3.2.1-SNAPSHOT Oct 2017 M 3.2.1-RC1

These loading times are measured from the Ul app with network set to Slow 3G and CPU throttled. The data was
gathered manually by timing the application while running the new performance data set.

Top Areas Improved in 3.2.1:

¢ Convert to Order has dramatically improved loading times (now under 20 seconds): OLMIS-3318 and OLMIS-
3320.

* Requisition Approve is significantly faster (now under 15 seconds): OLMIS-3346.
* Requisition Initiate is faster. OLMIS-3332 and OLMIS-3322.

* Requisition Submit and Authorize are also faster (improved by those same tickets).
» Batch Approve performs better scrolling through large numbers of products.

For more info about the data and results, see: https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/
Performance+Metrics

Test Coverage

OpenLMIS 3.2.1 is the first release using the new Release Candidate process. As part of this process, a full manual
regression test cycle was conducted, and multiple release candidates were published to address critical bugs before
releasing the final version 3.2.1.

Manual tests were conducted using a set of 110 Zephyr tests tracked in Jira. A total of 34 bugs were found during
testing. The full set of 110 tests was executed on the first Release Candidate (RC1). With subsequent release candidates
(RC2 and RC3), a smaller set of tests were re-executed based on which components were changed. In total, 34 bugs
were found from all rounds of manual testing for 3.2.1. See a spreadsheet of all regression test executions for this
release: 3.2.1-regression-tests.csv.

The automated tests (unit tests, integration tests, and contract tests) were 100% passing at the time of the 3.2.1 release.
Automated test coverage is tracked in Sonar.

All Changes by Component

Version 3.2.1 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each

74 Chapter 1. Contents:

https://openlmis.atlassian.net/browse/OLMIS-3318
https://openlmis.atlassian.net/browse/OLMIS-3320
https://openlmis.atlassian.net/browse/OLMIS-3320
https://openlmis.atlassian.net/browse/OLMIS-3346
https://openlmis.atlassian.net/browse/OLMIS-3332
https://openlmis.atlassian.net/browse/OLMIS-3322
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html#release-process
https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/docs/source/releases/3.2.1-regression-tests.csv
http://sonar.openlmis.org/projects

OpenLMIS Documentation, Release 3.0

component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.1.1

Bug fixes added in a backwards-compatible manner:

e OLMIS-3119: Fixed issue with TOKEN_DURATION variable being ingored, which in reality was an issue
with set up of the Spring context and autowiring not working as expected.

¢ OLMIS-3357: Reset email will not be sent when user is created or updated.

Source: Auth CHANGELOG

CCE Service 1.0.0-beta

This component is a beta of new Cold Chain Equipment functionality to support Vaccines in medical supply chains.
This API service component has an accompanying beta CCE UI component.

For details, see the functional documentation: Cold Chain Equipment Management.

Warning: This is a beta component, and is not yet intended for production use. APIs and functionality are still subject
to change until the official release.

Fulfillment Service 6.1.0

New functionality added in a backwards-compatible manner:
e OLMIS-3221: Added period start and end dates parameters to the order search endpoint.
Improvements added in a backwards-compatible manner:

e OLMIS-3112: Added OrderNumberGenerator extension point. Changed the default implementation to provide
8 character, base36 order numbers.

Source: Fulfillment CHANGELOG

Notification Service 3.0.4

Bug fixes, security and performance improvements (backwards-compatible):

¢ OLMIS-3394: Added notification request validator. From, to, subject and content fields are required, and if one
of them will be empty the endpoint will return response with 400 status code and error message.

Source: Notification CHANGELOG

Reference Data Service 9.0.0

Breaking changes:
e OLMIS-3116: User DTO now returns home facility UUID instead of Facility object.
e OLMIS-3105: User DTO now returns UUIDs instead of codes for role assignments.
* OLMIS-3293: Paginate search facilityTypeApprovedProducts and made endpoint RESTful.

1.1. Release Notes 75

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://openlmis.atlassian.net/browse/OLMIS-3119
https://openlmis.atlassian.net/browse/OLMIS-3357
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113145252/Cold+Chain+Equipment+Management
https://openlmis.atlassian.net/browse/OLMIS-3221
https://openlmis.atlassian.net/browse/OLMIS-3112
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-3394
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-3116
https://openlmis.atlassian.net/browse/OLMIS-3105
https://openlmis.atlassian.net/browse/OLMIS-3293

OpenLMIS Documentation, Release 3.0

New functionality added in a backwards-compatible manner:

OLMIS-2892: Added ideal stock amounts model.

OLMIS-2966: Create User Rights for Managing Ideal Stock Amounts.

OLMIS-3227: Added GET Ideal Stock Amounts endpoint with download csv functionality.
OLMIS-3022: Refresh right assignments on role-based access control (RBAC) structural changes.
OLMIS-3263: Added new ISA dto with links to nested objects.

OLMIS-396: Added ISA upload endpoint.

OLMIS-3200: Designed and added new demo data for EPI (Vaccines) program.

OLMIS-3254: Un-restrict most GET APIs for most resources.

OLMIS-3351: Added search by ids to /api/facilities endpoint.

OLMIS-3512: Added code validation for supervisory node create and update endpoints.

Bug fixes, security and performance improvements, also backwards-compatible:

OLMIS-2857: Refactored user search repository method to user database pagination and sorting.
OLMIS-2913: add DIVO user and assign to Inventory Manager role for SN1 and SN2.

OLMIS-3146: added PROGRAMS_MANAGE right and enforce it on CUD endpoints.

OLMIS-3209: Fixed problem with parsing orderable DTO when it contains several program orderables.
OLMIS-3290: Fixed searching Orderables by code and name.

OLMIS-3291: Fixed searching RequisitionGroups by supervisoryNode.

OLMIS-3346: Decreased number of database calls to retrieve Facility Type Approved Products.

Source: ReferenceData CHANGELOG

Reference Ul 5.0.4

The Reference UI (https://github.com/OpenL.MIS/openlmis-reference-ui/) is the web-based user interface for the
OpenLMIS Reference Distribution. This user interface is a single page web application that is optimized for offline
and low-bandwidth environments. The Reference Ul is compiled together from module UI modules using Docker

compose along with the OpenLMIS dev-ui. Ul modules included in the Reference Ul are:

auth-ui 6.0.0

New functionality:

OLMIS-2956: Simplified login and authorization services by removing “user rights” functionality and moving

to openlmis-referencedata-ui.

New functionality added in backwards-compatiable manner:

OLMIS-3141: After user resets their password, they are redirected to the login screen.

OLMIS-3283: Added a “Show password” option on password reset screen.

Bug fixes which are backwards-compatible:

OLMIS-3140: Added loading icon on forgot password modal.

Improvements:

76

Chapter 1. Contents:

https://openlmis.atlassian.net/browse/OLMIS-2892
https://openlmis.atlassian.net/browse/OLMIS-2966
https://openlmis.atlassian.net/browse/OLMIS-3227
https://openlmis.atlassian.net/browse/OLMIS-3022
https://openlmis.atlassian.net/browse/OLMIS-3263
https://openlmis.atlassian.net/browse/OLMIS-396
https://openlmis.atlassian.net/browse/OLMIS-3200
https://openlmis.atlassian.net/browse/OLMIS-3254
https://openlmis.atlassian.net/browse/OLMIS-3351
https://openlmis.atlassian.net/browse/OLMIS-3512
https://openlmis.atlassian.net/browse/OLMIS-2857
https://openlmis.atlassian.net/browse/OLMIS-2913
https://openlmis.atlassian.net/browse/OLMIS-3146
https://openlmis.atlassian.net/browse/OLMIS-3209
https://openlmis.atlassian.net/browse/OLMIS-3290
https://openlmis.atlassian.net/browse/OLMIS-3291
https://openlmis.atlassian.net/browse/OLMIS-3346
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://openlmis.atlassian.net/browse/OLMIS-2956
https://openlmis.atlassian.net/browse/OLMIS-3141
https://openlmis.atlassian.net/browse/OLMIS-3283
https://openlmis.atlassian.net/browse/OLMIS-3140

OpenLMIS Documentation, Release 3.0

» Updated dev-ui version to 6.

See openlmis-auth-ui CHANGELOG

cce-ui 1.0.0-beta

Beta release of CCE UI. See CCE service component above for more info.

fulfillment-ui 5.1.0

New functionality added in a backwards-compatible manner:

e OLMIS-3222: Added period start and end dates parameters to the order view screen
Bug fixes:

* OLMIS-3159: Fixed facility select loosing state no POD manage page.

* OLMIS-3285: Fixed broken pagination on Manage Proofs of Delivery page.

e OLMIS-3540: Now Manage POD displays items with IN_ROUTE status.
Improvements:

» Updated dev-ui version to 6.

See openlmis-fulfillment-ui CHANGELOG

referencedata-ui 5.2.2

New features:
e OLMIS-3153: Added facilityOperatorsService for communicating with the facilityOperators endpoints
» Extended facilityService with the ability to save facility
¢ OLMIS-3154: Changed facility view to edit screen.

OLMIS-3228: Create Download Current ISA Values page.

OLMIS-2217: Added ability to send reset password email.

* OLMIS-396: Added upload functionality to manage ISA screen.
Improvements:

e OLMIS-2857: Added username filter to user list screen.

* OLMIS-3283: Added a “Show password” option on password reset screen.

e OLMIS-3296: Reworked facility-program select component to use cached rograms, minimal facilities and per-
mission strings.

» Updated dev-ui version to 6.
Bug fixes:
¢ Added openlmis-offline as a dependency to the referencedata-program module.
* OLMIS-3291: Fixed incorrect state name.
* OLMIS-3499: Fixed changing username in title header.
See openlmis-referencedata-ui CHANGELOG

1.1. Release Notes 77

https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui
https://openlmis.atlassian.net/browse/OLMIS-3222
https://openlmis.atlassian.net/browse/OLMIS-3159
https://openlmis.atlassian.net/browse/OLMIS-3285
https://openlmis.atlassian.net/browse/OLMIS-3540
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-3153
https://openlmis.atlassian.net/browse/OLMIS-3154
https://openlmis.atlassian.net/browse/OLMIS-3228
https://openlmis.atlassian.net/browse/OLMIS-2217
https://openlmis.atlassian.net/browse/OLMIS-396
https://openlmis.atlassian.net/browse/OLMIS-2857
https://openlmis.atlassian.net/browse/OLMIS-3283
https://openlmis.atlassian.net/browse/OLMIS-3296
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

report-ui 5.0.4

Improvements:
* Updated dev-ui version to 6.

See openlmis-report-ui CHANGELOG

requisition-ui 5.2.0

Improvements:

e OLMIS-2956: Removed UserRightFactory from requisition-initiate module, and replaced with permissionSer-
vice.

e OLMIS-3294: Added loading modal after the approval is finished.

e OLMIS-2700: Added date initiated column and sorting to the View Requisitions table. Removed date authorized
and date approved.

e OLMIS-3181: Added front-end validation to the requisition batch approval screen.
e OLMIS-3233: Added ability to delete requisitions with “skipped” status.
e OLMIS-3246: Added ‘show’ field to reason assignments.
e OLMIS-3471: Explanation field on Non Full supply tab is no longer mandatory.
e OLMIS-3318: Added requisitions caching to the Convert to Order screen.
» Updated dev-ui version to 6.
Bug fixes:
e OLMIS-3151: Fixed automatically resolving mathematical error with adjustments.
e OLMIS-3255: Fixed auto-select the “Supplying facility” on Requisition Convert to Order.

* OLMIS-3296: Reworked facility-program select component to use cached programs, minimal facilities and
permission strings.

e OLMIS-3322: Added storing initiated requisition in offline cache.
See openlmis-requisition-ui CHANGELOG

stockmanagement-ui 1.0.1

New functionality that are backwards-compatible:
e OLMIS-2732: Print submitted physical inventory.
Improvements:
e OLMIS-3246: Added support for hidden stock adjustment reasons.

e OLMIS-3296: Reworked facility-program select component to use cached rograms, minimal facilities and per-
mission strings.

* Updated dev-ui version to 6.

See openlmis-ui-components CHANGELOG

78 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2956
https://openlmis.atlassian.net/browse/OLMIS-3294
https://openlmis.atlassian.net/browse/OLMIS-2700
https://openlmis.atlassian.net/browse/OLMIS-3181
https://openlmis.atlassian.net/browse/OLMIS-3233
https://openlmis.atlassian.net/browse/OLMIS-3246
https://openlmis.atlassian.net/browse/OLMIS-3471
https://openlmis.atlassian.net/browse/OLMIS-3318
https://openlmis.atlassian.net/browse/OLMIS-3151
https://openlmis.atlassian.net/browse/OLMIS-3255
https://openlmis.atlassian.net/browse/OLMIS-3296
https://openlmis.atlassian.net/browse/OLMIS-3322
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2732
https://openlmis.atlassian.net/browse/OLMIS-3246
https://openlmis.atlassian.net/browse/OLMIS-3296
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

ui-components 5.2.0

ui-components 5.2.0 contains significant new functionality including virtual table scrolling for improved performance
of large tables, a new sort control, PouchDB support, improved Offline detection and much more.

New functionality added in a backwards-compatible manner:

OLMIS-3182: Added openlmis-table-pane that implements high performance table rendering for large data
tables.

OLMIS-2655: Added sort control component.
OLMIS-3462: Added debounce option for inputs.
OLMIS-3199: Added PouchDB.

New functionality:

* Added modalStateProvider to ease modal state defining
Bug fixes:

¢ OLMIS-3248: Added missing message for number validation.

e OLMIS-3170: Fixed auto resize input controls.

* OLMIS-3500: Fixed a bug with background changing color when scrolling.
Improvements:

e OLMIS-3114: Improved table keyboard accessibility. Made table scroll if focused cell is off screen. Wrapped
checkboxes in table cells automatically if they don’t have a label.

* Modals now have backdrop and escape close actions disabled by default. Can by overridden by adding ‘back-
drop’ and ‘static’ properties to the dialog definition.

» Extended stateTrackerService with the ability to override previous state parameters and pass state options.
* Updated dev-ui version to 6.
* OLMIS-3359: Improved the way offline is detected.

See openlmis-ui-components CHANGELOG

ui-layout:5.0.3

New features:

e OLMIS-2956: Added loadingService with $stateChangeStart interceptor
Improvements:

* OLMIS-3303: Added warning for users with Javascript disabled

¢ Updated dev-ui version to 6.

See openlmis-ui-layout CHANGELOG

Dev Ul

The Dev UI developer tooling has advanced to v6.

1.1. Release Notes 79

https://openlmis.atlassian.net/browse/OLMIS-3182
https://openlmis.atlassian.net/browse/OLMIS-2655
https://openlmis.atlassian.net/browse/OLMIS-3462
https://openlmis.atlassian.net/browse/OLMIS-3199
https://openlmis.atlassian.net/browse/OLMIS-3248
https://openlmis.atlassian.net/browse/OLMIS-3170
https://openlmis.atlassian.net/browse/OLMIS-3500
https://openlmis.atlassian.net/browse/OLMIS-3114
https://openlmis.atlassian.net/browse/OLMIS-3359
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2956
https://openlmis.atlassian.net/browse/OLMIS-3303
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui

OpenLMIS Documentation, Release 3.0

Report Service 1.0.0

This new service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report: the Facility Assignment Configuration Errors report
(OLMIS-2760).

Additional built-in reports in OpenLMIS 3.2.1 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.0.0 version to build additional reports.

Changes since Report Service 1.0.0-beta:
e OLMIS-3116: Change user home facility from Facility DTO to UUID

Requisition Service 5.1.0

Improvements:
e OLMIS-3544: Added sort to requisition search endpoint.

e OLMIS-3246: Added support for hidden stock adjustment reasons. Also added validations to ensure all special
reasons configured for Requisition service to use are valid reasons.

e OLMIS-3233: Added ability to delete requisitions with Skipped status.
e OLMIS-3351: Improve performance of batch retrieveAll.
Bug fixes added in a backwards-compatible manner:
* OLMIS-3126: Fix unable to batch save when skip is disabled in Requisition Template.

e OLMIS-3215: Do not allow for status change (submit/authorize/approve) when period end after today.

OLMIS-3076: Exclude emergency from previous requisitions, remove regular requisition only if it is newest.

OLMIS-3320: Improved requisitions for convert endpoint performance.

OLMIS-3404: Added validation for sending reasons in line item adjustments that are not present on available
reason list in requisition.

Improve demo data:
* OLMIS-3202: Modified requisition template for EM program to match Malawi example columns.
Source: Requisition CHANGELOG

Stock Management 2.0.0

Contract breaking changes:

e OLMIS-2732: Print submitted physical inventory. During work on this ticket physical inventory API was
redesigned to be RESTful.

New functionality that are backwards-compatible:

e OLMIS-3246: Add ability to configure hidden stock adjustment reasons. Updated demo data. Also impacts
Requisition and UL

Bug fixes, security and performance improvements, also backwards-compatible:

e OLMIS-3148: Added missing messages for error keys

80 Chapter 1. Contents:

https://openlmis.atlassian.net/browse/OLMIS-2760
https://openlmis.atlassian.net/browse/OLMIS-3116
https://openlmis.atlassian.net/browse/OLMIS-3544
https://openlmis.atlassian.net/browse/OLMIS-3246
https://openlmis.atlassian.net/browse/OLMIS-3233
https://openlmis.atlassian.net/browse/OLMIS-3351
https://openlmis.atlassian.net/browse/OLMIS-3126
https://openlmis.atlassian.net/browse/OLMIS-3215
https://openlmis.atlassian.net/browse/OLMIS-3076
https://openlmis.atlassian.net/browse/OLMIS-3320
https://openlmis.atlassian.net/browse/OLMIS-3404
https://openlmis.atlassian.net/browse/OLMIS-3202
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2732
https://openlmis.atlassian.net/browse/OLMIS-3246
https://openlmis.atlassian.net/browse/OLMIS-3148

OpenLMIS Documentation, Release 3.0

e OLMIS-3346: Increase performance of POST /stockEvents endpoint by reducing db calls and use lazy-loading
in the stock event process context. Also changed logic for notification of stockout to asynchronous.

Source: Stock Management CHANGELOG

Components with No Changes

Other tooling components have not changed, including: the logging service, the Consul-friendly distribution of nginx,
the docker Postgres 9.6-postgis image, the docker rsyslog image, the docker scalyr image, and a library for shared Java
code called service-util.

Contributions
Thanks to the Malawi implementation team who has contributed a number of pull requests to add functionality and

customization in ways that have global shared benefit.

For a detailed list of contributors, see the Release Notes for OpenLMIS 3.2.0, 3.1.0 and 3.0.0.

Further Resources

Learn more about the OpenLMIS Community and how to get involved!

1.1.17 3.2.0 Release Notes - 1 September 2017

Status: Stable

3.2.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.2.0 release of OpenLMIS!

This release represents another major milestone in the version 3 series, which is the result of a software re-architecture
that allows more functionality to be shared among the community of OpenLMIS users.

3.2.0 includes new features in stock management, new administrative screens, targeted performance improve-
ments and a beta version of the Cold Chain Equipment (CCE) service. It also contains contributions in the form of
pull requests from the Malawi implementation, a national implementation that is now live on OpenLLMIS version 3.

3.2.0 represents the first milestone towards the Vaccines MVP feature set.

After 3.2.0, there are further planned milestone releases and patch releases that will add more features to support
Vaccine/EPI programs and continue making OpenLMIS a full-featured electronic logistics management information
system (LMIS). Please reference the Living Product Roadmap for the upcoming release priorities. Patch releases will
continue to include bug fixes, performance improvements, and pull requests are welcomed.

Compatibility

Important: If you are upgrading to 3.2.0 and using your own database solution (i.e. Amazon RDS), and not the
Postgres image in the Reference Distribution, please make sure you have the Postgres “uuid-ossp” extension installed.
If you are using the Postgres image from the Reference Distribution, then this extension will be installed for you once

1.1. Release Notes 81

https://openlmis.atlassian.net/browse/OLMIS-3346
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-nginx
https://github.com/OpenLMIS/postgres
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-scalyr
https://github.com/OpenLMIS/openlmis-service-util
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap

OpenLMIS Documentation, Release 3.0

you pull the latest image from DockerHub. For more information about this change, please see the Postgres section,
and OLMIS-2681 under the Requisition Service section.

Important: 3.2.0 requires a data load script that must be run once in order to properly upgrade from an older
version 3 to 3.2.0. To run this script, add refresh-db to your Spring profile. An example: export
spring_profiles_active="refresh-db". You only need to run it the first time you start the server af-
ter upgrading to 3.2.0. For more information about this change, please see OLMIS-2811 under the Reference Data
Service section.

Important: 3.2.0 contains a data migration script that must be applied in order to upgrade from older version 3 to
3.2.0. This migration has its own GitHub repo and Docker image. See Adjustment Reason Migration. If you are
upgrading from any previous version of 3 to 3.2.0, see the README file which has specific instructions to apply this
migration. For background on this migration, see Connecting Stock and Requisition Services.

Important: Requisition Service now requires use of the Stock Management service. Data collected on requisition
forms uses adjustment reasons from the Stock service and submits data to stock cards. Certain columns on the Requi-
sition Template are now required. See Requisition Template Column Dependencies and Calculations as well as more
details in the Requisition component below.

All other changes are backwards-compatible. Any changes to data or schemas include automated migrations from
previous versions back to version 3.0.1. All new or altered functionality is listed in the sections below for New
Features and Changes to Existing Functionality.

For background information on OpenLMIS version 3’s micro-service architecture, extensions/customizations, and
upgrade paths for OpenLMIS versions 1 and 2, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLLMIS Reference Distribution 3.2.0

New Features

This is a new section to flag all the new features.

* Stock Management: is not an official release and added a notification and new support for recording VVM
status.

¢ Administrative Screens: view supply lines, geogrphic zones, requisition groups and program settings.

* beta version of the new Cold Chain Equipment (CCE) service: which includes the support to upload a catalog
of cold chain equipment, add equpiment inventory (from the catalog) to facilities, and manually update the
functional status of that equipment. Review the wiki for details on the upcoming features.

* Performance: targeted improvements were made based on the first implementation’s use and results. Improve-
ments were made in server response times, which impacts load time, and memory utilization. In addition, new
tooling was introduced to provide the ability to track performance improvements and bottlenecks.

¢ Reference data

* Report service is now a separate component (see Report component below)

Changes to Existing Functionality

Version 3.2.0 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

82 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-adjustment-reason-migration
https://openlmis.atlassian.net/wiki/spaces/OP/pages/114234797/Connecting+Stock+Management+and+Requisition+Services
https://openlmis.atlassian.net/wiki/spaces/OP/pages/112138794/Implementer+Administrator#Implementer/Administrator-RequisitionTemplateColumns
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.2.0
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113145252/Cold+Chain+Equipment+Management

OpenLMIS Documentation, Release 3.0

* Requisition Service now uses Stock Management to handle adjustment reasons and to store stock data in stock
cards. This change does not alter end-user functionality in Requisitions, but it does allow users with Stock Man-
agement rights to begin viewing stock cards with data populated from requisitions. This change also requires a
data migration script to upgrade older version 3 systems to 3.2.0. (See Requisition component below.)

API Changes
Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

¢ Auth Service uses Authorization header instead of access_token (see Auth OLMIS-2871 below)

¢ Fulfillment Service and Requisition Service changed some dates from ZonedDateTime to LocalDate (see
OLMIS-2898 below)

» ReferenceData contains changes to Facility search and Geographic Search APIs (see component below)

* Requisition Service now requires use of the Stock Management service and connects to Stock service to handle
adjustment reasons and store data on stock cards (see Requisition component)

» Configuration settings endpoints (/api/settings) are no longer available; use environment variables to configure
the application (see OLMIS-2612 below)

* postgres database now requires one additional extension: uuid. It is already included in the postgres component
(see postgres component below), but those hosting on Amazon AWS RDS will need to add the extension.

All Changes by Component

Version 3.2.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.1.0

Improvements which are backwards-compatible:

e OLMIS-1498: The service will now fetch list of available services from consul, and update OAuth2 resources
dynamically when a new service is registered or de-registered. Those tokens are no longer hard-coded.

e OLMIS-2866: The service will no longer used self-contained user roles (USER, ADMIN), and depend solely
on referencedata’s roles for user management.

e OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

Source: Auth CHANGELOG

CCE Service 1.0.0-beta

This component is a beta of new Cold Chain Equipment functionality to support Vaccines in medical supply chains.
This API service component has an accompanying beta CCE UI component.

CCE 1.0.0-beta includes many new features:

* Create and update a cold chain equipment catalog

1.1. Release Notes 83

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://openlmis.atlassian.net/browse/OLMIS-1498
https://openlmis.atlassian.net/browse/OLMIS-2866
https://openlmis.atlassian.net/browse/OLMIS-2871
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

* Add equipment inventory to facilities
» Update the functional status of equipment inventory
For details, see the functional documentation: Cold Chain Equipment Management

Warning: This is a beta component, and is not yet intended for production use. APIs and functionality are still subject
to change until the official release.

Fulfillment Service 6.0.0

Contract breaking changes:

* OLMIS-2898: Changed POD receivedDate from ZonedDateTime to LocalDate.
New functionality added in a backwards-compatible manner:

e OLMIS-2724: Added an endpoint for retrieving all the available, distinct requesting facilities.
Bug fixes and improvements (backwards-compatible):

e OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

e OLMIS-3059: The search orders endpoint now sorts the orders by created date property (most recent first).
Source: Fulfillment CHANGELOG

nginx v4

Improves stability and reliability of the application when individual services stop and start in their lifecycle. Also
performance is improved by reducing latency under load between nginx and Services through configuration tuning.

* OLMIS-2840: Allow services to stop and start without crashing consul-template.
e OLMIS-2957: Reduce nginx latency.

Notification Service 3.1.0

Bug fixes, security and performance improvements (backwards-compatible):

e OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

Source: Notification CHANGELOG

Postgres 9.6-postgis

The postgres image in OpenL.MIS 3.2.0 has changed slightly to include the uuid-ossp extension, in order to randomly
generate UUIDs in SQL (this new requirement was introduced in OLMIS-2681). Because the change is minor and
does not change the version of Postgres, we have released an updated image with the same version number (9.6-
postgis). When using the 3.2.0 release, as long as you use docker—compose pull, it will pull the correct version
of the postgres image.

84 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/113145252/Cold+Chain+Equipment+Management
https://openlmis.atlassian.net/browse/OLMIS-2898
https://openlmis.atlassian.net/browse/OLMIS-2724
https://openlmis.atlassian.net/browse/OLMIS-2871
https://openlmis.atlassian.net/browse/OLMIS-3059
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2840
https://openlmis.atlassian.net/browse/OLMIS-2957
https://openlmis.atlassian.net/browse/OLMIS-2871
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2681

OpenLMIS Documentation, Release 3.0

Reference Data Service 8.0.0

Breaking changes:
e OLMIS-2709: Facility search now returns smaller objects.

e OLMIS-2698: Geographic Zone search endpoint now is paginated and accepts POST requests, also has new
parameters: name and code.

New functionality added in a backwards-compatible manner:
e OLMIS-2609: Created rights to manage CCE and assigned to system administrator.
e OLMIS-2610: Added CCE Inventory View/Edit rights, added demo data for those rights.
e OLMIS-2696: Added search requisition groups endpoint.
e OLMIS-2780: Added endpoint for getting all facilities with minimal representation.
¢ Introduced JaVers to all domain entities. Also each domain entity has endpoint to get the audit information.
* OLMIS-3023: Added enableDatePhysicalStockCountCompleted field to program settings.

e OLMIS-2619: Added CCE Manager role and assigned CCE Manager and Inventory Manager roles to new user
ccemanager.

e OLMIS-2811: Added API endpoint for user’s permission strings.
* OLMIS-2885: Added ETag support for programs and facilities endpoints.
Bug fixes, security and performance improvements, also backwards-compatible:

e OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

* OLMIS-2534: Fixed potential huge performance issue.
e OLMIS-2716: Set productCode field in Orderable as unique.
Source: ReferenceData CHANGELOG

Reference Ul 5.0.3

The Reference Ul bundles the following UI components together using Docker images specified in its compose file.

auth-ui 5.0.3

New functionality added in backwards-compatiable manner:
e OLMIS-3085: Added standard login and logout events.

Bug fixes and security updates:
e OLMIS-3124: Removed openlmis-download directive and moved it to openlmis-ui-components
e MW-348: Added loading modal while logging in.

* OLMIS-2871: Made the component use an Authorization header instead of an access_token request parameter
when calls to the backend are made.

e OLMIS-2867: Added message when user tries to log in while offline.
See openlmis-auth-ui CHANGELOG

1.1. Release Notes 85

https://openlmis.atlassian.net/browse/OLMIS-2709
https://openlmis.atlassian.net/browse/OLMIS-2698
https://openlmis.atlassian.net/browse/OLMIS-2609
https://openlmis.atlassian.net/browse/OLMIS-2610
https://openlmis.atlassian.net/browse/OLMIS-2696
https://openlmis.atlassian.net/browse/OLMIS-2780
https://openlmis.atlassian.net/browse/OLMIS-3023
https://openlmis.atlassian.net/browse/OLMIS-2619
https://openlmis.atlassian.net/browse/OLMIS-2811
https://openlmis.atlassian.net/browse/OLMIS-2885
https://openlmis.atlassian.net/browse/OLMIS-2871
https://openlmis.atlassian.net/browse/OLMIS-2534
https://openlmis.atlassian.net/browse/OLMIS-2716
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/blob/master/docker-compose.yml
https://openlmis.atlassian.net/browse/OLMIS-3085
https://openlmis.atlassian.net/browse/OLMIS-3124
https://openlmis.atlassian.net/browse/MW-348
https://openlmis.atlassian.net/browse/OLMIS-2871
https://openlmis.atlassian.net/browse/OLMIS-2867
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

cce-ui 1.0.0-beta

Beta release of CCE UI. See CCE service component below for more info.

fulfillment-ui 5.0.3

Bug fixes:

e OLMIS-2837: Fixed filtering on the manage POD page.

* OLMIS-2724: Fixed broken requesting facility filter select on Order View.
See openlmis-fulfillment-ui CHANGELOG

referencedata-ui 5.2.1

Improvements:
e OLMIS-2780: User form now uses minimal facilities endpoint.

New functionality added in a backwards-compatible manner:

OLMIS-3085: Made minimal facility list download and cache when user logs in.

OLMIS-2696: Added requisition group administration screen.

OLMIS-2698: Added geographic zone administration screens.
OLMIS-2853: Added view Supply Lines screen.
* OLMIS-2600: Added view Program Settings screen.

Bug fixes
e OLMIS-2905: User with only POD_MANAGE or ORDERS_MANAGE can now access ‘View Orders’ page.
* OLMIS-2714: Fixed loading modal closing too soon after saving user.

See openlmis-referencedata-ui CHANGELOG

report-ui 5.0.3

Big fixes:
e OLMIS-2911: Added http method and body to jasper template paramter
See openlmis-report-ui CHANGELOG

requisition-ui 5.1.1

e OLMIS-2797: Updated product-grid error messages to use openlmis-invalid.
New functionality that are not backwards-compatible:

e OLMIS-2833: Add date field to Requisition form

86 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-cce-ui
https://openlmis.atlassian.net/browse/OLMIS-2837
https://openlmis.atlassian.net/browse/OLMIS-2724
https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2780
https://openlmis.atlassian.net/browse/OLMIS-3085
https://openlmis.atlassian.net/browse/OLMIS-2696
https://openlmis.atlassian.net/browse/OLMIS-2698
https://openlmis.atlassian.net/browse/OLMIS-2853
https://openlmis.atlassian.net/browse/OLMIS-2600
https://openlmis.atlassian.net/browse/OLMIS-2905
https://openlmis.atlassian.net/browse/OLMIS-2714
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2911
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2797
https://openlmis.atlassian.net/browse/OLMIS-2833

OpenLMIS Documentation, Release 3.0

Date physical stock count completed is required for submit and authorize requisition. - OLMIS-3025: Introduced
frontend batch-approval functionality. - OLMIS-3023: Added configurable physical stock date field to program set-
tings. - OLMIS-2694: Change Requisition adjustment reasons to come from Requisition object. OpenLMIS Stock
Management Ul is now connected to Requisition UL

Improvements:
* OLMIS-2969: Requisitions show saving indicator only when requisition is editable.
Bug fixes:
e OLMIS-2800: Skip column will not be shown in submitted status when user has no authorize right.

e OLMIS-2801: Disabled the ‘Add Product’ button in the non-full supply screen for users without rights to edit
the requisition. Right checks for create/initialize permissions were also fixed.

e OLMIS-2906: “Outdated offline form” error is not appearing in a product grid when requisition is up to date.
e OLMIS-3017: Fixed problem with outdated status messages after Authorize action.
See openlmis-requisition-ui CHANGELOG

stockmanagement-ui 1.0.0

First release of Stock Management UI. See Stock Management service component below for more info.

ui-components 5.1.1

New functionality added in a backwards-compatible manner:

* OLMIS-2978: Made sticky table element animation more performant.

OLMIS-2573: Re-worked table form error messages to not have multiple focusable elements.

OLMIS-1693: Added openlmis-invalid and error message documentation.

OLMIS-249: Datepicker element now allows translating day and month names.

OLMIS-2817: Added new file input directive.

OLMIS-3001: Added external url run block, that allows opening external urls.
Bug fixes:
e OLMIS-3088: Re-implemented tab error icon.
* OLMIS-3036: Cleaned up and formalized input-group error message implementation.

e OLMIS-3042: Updated openlmis-invalid and openlmis-popover element compilation to fix popovers from in-
stantly closing.

* OLMIS-2806: Fixed stock adjustment reasons display order not being respected in the UL
See openlmis-ui-components CHANGELOG

ui-layout:5.0.2

New features:
e OLMIS-2543: Added interceptor for displaying server errors
See openlmis-ui-layout CHANGELOG

1.1. Release Notes 87

https://openlmis.atlassian.net/browse/OLMIS-3025
https://openlmis.atlassian.net/browse/OLMIS-3023
https://openlmis.atlassian.net/browse/OLMIS-2694
https://openlmis.atlassian.net/browse/OLMIS-2969
https://openlmis.atlassian.net/browse/OLMIS-2800
https://openlmis.atlassian.net/browse/OLMIS-2801
https://openlmis.atlassian.net/browse/OLMIS-2906
https://openlmis.atlassian.net/browse/OLMIS-3017
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui
https://openlmis.atlassian.net/browse/OLMIS-2978
https://openlmis.atlassian.net/browse/OLMIS-2573
https://openlmis.atlassian.net/browse/OLMIS-1693
https://openlmis.atlassian.net/browse/OLMIS-249
https://openlmis.atlassian.net/browse/OLMIS-2817
https://openlmis.atlassian.net/browse/OLMIS-3001
https://openlmis.atlassian.net/browse/OLMIS-3088
https://openlmis.atlassian.net/browse/OLMIS-3036
https://openlmis.atlassian.net/browse/OLMIS-3042
https://openlmis.atlassian.net/browse/OLMIS-2806
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2543
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md

OpenLMIS Documentation, Release 3.0

Dev Ul

The Dev Ul developer tooling has advanced to v5.

Report Service 1.0.0

This new service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report (the Facility Assignment Configuration Errors report).

Warning: Developers should take note that its design will be changing with future releases. Developers and imple-
menters are discouraged from using this 1.0.0 version to build additional reports.

Current report functionality:

OLMIS-2760: Facility Assignment Configuration Errors

Additional built-in reports in OpenLMIS 3.2.0 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Requisition Service 5.0.0

Contract breaking changes:

OLMIS-2612: Configuration settings endpoints (/api/settings) are no longer available. Use environment vari-
ables to configure the application.

MW-365: Requisition search endpoints: requisitionsForApproval and requisitionsForConvert will now return
smaller basic dtos.

OLMIS-2833 and OLMIS-3023: Added date physical stock count completed to Requisition; and feature can be
turned on and off in Program Settings

OLMIS-2671: Stock Management service is now required by Requisition
OLMIS-2694: Changed Requisition adjustment reasons to come from Stock Service
OLMIS-2898: Requisition search endpoint takes from/to parameters as dates without time part.

OLMIS-2830: As of this version, Requisition now uses Stock Management as the source for adjust-
ment reasons, moreover it stores snapshots of these available reasons during initiation. Important: in
order to migrate from older versions, running this migration is required: https://github.com/OpenLMIS/
openlmis-adjustment-reason-migration

New functionality added in a backwards-compatible manner:

OLMIS-2709: Changed ReferenceData facility service search endpoint to use smaller dto.

The /requisitions/requisitionsForConvert endpoint accepts several sortBy parameters. Data returned by the end-
point will be sorted by those parameters in order of occurrence. By defaults data will be sorted by emergency
flag and program name.

OLMIS-2928: Introduced new batch endpoints, that allow retrieval and approval of several requisitions at once.
This also refactored the error handling.

Bug fixes added in a backwards-compatible manner:

OLMIS-2788: Fixed print requisition.

OLMIS-2747: Fixed bug preventing user from being able to re-initiate a requisition after being removed, when
there’s already a requisition for next period.

88

Chapter 1. Contents:

https://github.com/OpenLMIS/dev-ui
https://openlmis.atlassian.net/browse/OLMIS-2760
https://openlmis.atlassian.net/browse/OLMIS-2612
https://openlmis.atlassian.net/browse/MW-365
https://openlmis.atlassian.net/browse/OLMIS-2833
https://openlmis.atlassian.net/browse/OLMIS-3023
https://openlmis.atlassian.net/browse/OLMIS-2671
https://openlmis.atlassian.net/browse/OLMIS-2694
https://openlmis.atlassian.net/browse/OLMIS-2898
https://openlmis.atlassian.net/browse/OLMIS-2830
https://github.com/OpenLMIS/openlmis-adjustment-reason-migration
https://github.com/OpenLMIS/openlmis-adjustment-reason-migration
https://openlmis.atlassian.net/browse/OLMIS-2709
https://openlmis.atlassian.net/browse/OLMIS-2928
https://openlmis.atlassian.net/browse/OLMIS-2788
https://openlmis.atlassian.net/browse/OLMIS-2747

OpenLMIS Documentation, Release 3.0

e OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

* OLMIS-2534: Fixed potential huge performance issue. The javers log initializer will not retrieve all domain
objects at once if a repository implemenets PagingAndSortingRepository

e OLMIS-3008: Add correct error message when trying to convert requisition to an order with approved quantity
disabled in the the requisition template.

* OLMIS-2908: Added a unique partial index on requisitions, which prevents creation of requisitions which have
the same facility, program and processing period while being a non-emergency requsition. This is now enforced
by the database, not only the application logic.

e OLMIS-3019: Removed clearance of beginning balance and price per pack fields from skipped line items while
authorizing.

e OLMIS-2911: Added HTTP method parameter to jasper template parameter object.
e OLMIS-2681: Added profiling to requisition search endpoint, also it is using db pagination now.
Source: Requisition CHANGELOG

Stock Management 1.0.0

This is the first official release of the new Stock Management service. Its beta version was previously released in
Reference Distribution 3.1.0. Since then, the major improvements are:

e OLMIS-2710: Configure VVM use per product

OLMIS-2654 and OLMIS-2663: Record VVM status with physical stock count and adjustments

OLMIS-2711: Change Physical Inventory to include reasons for discrepancy

OLMIS-2834: Requisition form info gets pushed into Stock cards (see more in Requisition component)

* plus lots of technical work including Flyway migrations, RAML, tests, validations, translations, documentation,
and demo data.

Watch a video demo of the Stock Management functionality: https://www.youtube.com/watch?v=QMcXX3tUTHE
(English) or https://www.youtube.com/watch?v=G8BK0izxbnQ (French)

Now that this is an official release, the Stock service is considered stable for production use. Future changes to
functionality or APIs will be tracked and documented.

For a list of all commits since 1.0.0-beta, see GitHub commits

Components with No Changes

Other tooling components have not changed, including: the logging service and a library for shared Java code called
service-util.

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on com-
mittees, bringing the community together, and of course writing code and documentation. Below is a list of those who
contributed code or documentation into the GitHub repos. If anyone who contributed in GitHub is missing, please
contact the Community Manager.

Team Parrot: Pawel Gesek, Pawel Albecki, Nikodem Graczewski, Mateusz Kwiatkowski, Joanna Bebak, Pawel
Nawrocki

1.1. Release Notes 89

https://openlmis.atlassian.net/browse/OLMIS-2871
https://openlmis.atlassian.net/browse/OLMIS-2534
https://openlmis.atlassian.net/browse/OLMIS-3008
https://openlmis.atlassian.net/browse/OLMIS-2908
https://openlmis.atlassian.net/browse/OLMIS-3019
https://openlmis.atlassian.net/browse/OLMIS-2911
https://openlmis.atlassian.net/browse/OLMIS-2681
https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2710
https://openlmis.atlassian.net/browse/OLMIS-2654
https://openlmis.atlassian.net/browse/OLMIS-2663
https://openlmis.atlassian.net/browse/OLMIS-2711
https://openlmis.atlassian.net/browse/OLMIS-2834
https://www.youtube.com/watch?v=QMcXX3tUTHE
https://www.youtube.com/watch?v=G8BK0izxbnQ
https://github.com/OpenLMIS/openlmis-stockmanagement/commits/master
https://github.com/OpenLMIS/openlmis-rsyslog
https://github.com/OpenLMIS/openlmis-service-util

OpenLMIS Documentation, Release 3.0

Team ILL: Chongsun Ahn, Brandon Bowersox-Johnson, Sam Im, Mary Jo Kochendorfer, Ben Leibert, Nick Reid,
Josh Zamor

A special thanks to the implementers working in Malawi who contributed features and improvements: Sebastian
Brudzinski, Weronika Ciecierska, L.ukasz Lewczynski, Klaudia Patkowska, Ben Leibert, Christine Lenihan.

Since version 3.1.2, we have received 40 pull requests from outside implementers and contributors.

Special thanks to community members: Kaleb Brownlow, Lindabeth Doby, Tenly Snow, Jake Watson, Ashraf Islam,
Parambir Gill, and all who attended the Product Committee, Technical Committee and Governance Committee meet-
ings, and the many funders, supporters, implementors, partners, and those working around the world to make medical
supply chains work for all people.

Further Resources

View all JIRA Tickets in 3.2.0.
Learn more about the OpenLMIS Community and how to get involved!
For older Release Notes before 3.2.0, see Releases in the OpenLMIS wiki.

For more about OpenLLMIS releasing and versioning, see Versioning and Releasing.

1.2 Architecture

As of OpenLMIS v3, the architecture has transitioned to (micro) services fulfilling RESTful (HTTP) API requests.
A modularized Reference Ul application runs in a browser and uses those APIs to expose functionality to end users.
Other systems and mobile apps may also use the APIs to integrate and provide functionality. A Reporting and Analytics
Platform uses a data warehouse strategy to offer visualizations of OpenLMIS data.

Extension mechanisms allow for components of the architecture to be customized without the need for the community
to fork the code base:

» Ul modules give flexibility in creating new user experiences or changing existing ones
» Extension Points & Modules - allows Service/API functionality to be modified
» Extra Data - allows for extensions to store data with existing components

* Reporting and Analytics Platform - allows for robust reporting solutions to be developed to meet implementation
needs

Combined these components allow the OpenLMIS community to customize and contribute to a shared LMIS.

1.2.1 Interoperability

Read more on Interoperability.

Interoperability

No one IT system can fully manage a supply chain, or a health system, in its entirety. This fact is a core design
intention behind OpenLMIS’ eager approach to working with other IT systems through established open standards.
Since OpenLMIS is web-based, has a supply chain focus, and originated in the health space the open standards that
OpenLMIS uses also come from those spaces.

This document will cover specific standards and profiles that are in use while the General Interoperability Approach
document covers more on the reasoning behind some of these choices in regards to enterprise integration.

920 Chapter 1. Contents:

https://github.com/pulls?page=2&q=is%3Apr+user%3AOpenLMIS+is%3Aclosed
https://openlmis.atlassian.net/issues/?jql=statusCategory%20%3D%20done%20AND%20project%20%3D%2011100%20AND%20fixVersion%20%3D%203.2%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
http://openlmis.org/about/community/
https://openlmis.atlassian.net/wiki/spaces/OP/pages/38371432/Releases
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://openlmis.atlassian.net/wiki/x/IYAKAw
interop.html
https://opensource.com/resources/what-are-open-standards
https://docs.google.com/document/d/1AJhbWa6RKbEf5eRwGY1pNlUVc8lpODeEZCtUq5Q9zik/edit?usp=sharing

OpenLMIS Documentation, Release 3.0

Web

REST APIs over HTTP w/ JSON preferred

* Authentication is delegated to OAuth2 with bearer tokens
* Unique identifiers are UUID

* Datetimes in RFC 3339

» Language tags in ISO 639

UTEF-8 encoding as default

Supply Chain

* Product Model leverages lessons learned from GS1 and the BI&A Logical Model

» Configurable file exchange (FTP/AS3) for exchanging Orders and Shipments with Enterprise Resource Planning
(ERP) / Warehouse Management Systems (WMS)

* GS1 identifiers supported on products with preference given to GS1 identifiers, message formats and event
transactions where GS1 items are in use. (expanding)

* Support for EDI (ANSI x12 / EDIFACT) in exchanging inventory reports (planned)

Health

HL7’s FHIR for:
* Location for facilities, geographic areas. Planned support for sub-facility
¢ Device for Cold Chain Equipment

* Measure & MeasureReport for metrics and indicators.

Profiles & Use Cases

Open standards give us most of what we need to start integrating systems, however it can still be useful to refer to
standard profiles and/or use cases that use the standards to achieve a specific purpose.

Note on sources of truth and derived definitions

When interoperating or integrating with another system it’s important to take a moment and determine which systems
own a particular set of data, and which systems need to know about that data, and potentially add to it.

For this reason we’ll be using two terms in the following sections:

 Source of Truth (aka Master Data): Is a source, often an IT system though it could be something such as a shared
spreadsheet, that defines the one canonical definition of some thing. For some entities (such as a Product), there
may be many sources of truth for specific aspects of that entity. It’s important to note however that no two or
more sources of truth may try to define the same aspect of the entity.

 Derived data: Is data which comes from a source of truth. It may enhance/add to the definition that comes
from the source of truth. e.g. a Master Facility List (MFR) may be a source of truth that defines the names
and locations of all the facilities. In OpenLMIS the Facilities we have would be derived from the MFR, and

1.2. Architecture 91

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://tools.ietf.org/html/rfc3339
https://www.iso.org/iso-639-language-codes.html
https://en.wikipedia.org/wiki/UTF-8
https://openlmis.atlassian.net/wiki/x/PAASB
https://www.gs1.org/
https://wiki.digitalsquare.io/images/d/d0/Logical_Reference_Model.pdf
http://hl7.org/fhir/
https://www.hl7.org/fhir/location.html
https://www.hl7.org/fhir/device.html
https://www.hl7.org/fhir/measure.html
https://www.hl7.org/fhir/measurereport.html

OpenLMIS Documentation, Release 3.0

additionally we might enrich our derived definition with information such as how it fits into the supply chain or
whom in OpenLMIS is assigned to it.

A few examples of where OpenLMIS expects to be a source of truth:
* Re-supply requests and fulfillments that occur inside OpenLMIS
* A mapping of supply chain workflows and approval processes
* Cold chain equipment, where it’s installed and functional status
* Stock cards and associated movements that occur in OpenLMIS
A few examples where OpenLMIS we hope to derive data from:
* Facilities, geographic and administrative areas
* Commodities, Items, Lots and Categorizations

¢ Cold chain equipment temperature and alerts thereof

Defining Locations (geographic areas, facilities, store rooms, etc)

OpenLMIS needs to know about the Facilities and Geopgraphic Zones that are a part of the supply chain to enable
various re-supply workflows: hospitals, clinics, etc. While OpenLMIS needs this information, we believe that the
process of uniquely identifying and assigning core attributes (e.g. name, address, etc) of these places works best when
the information is curated outside of OpenLLMIS, and then shared with OpenLMIS.

The core profile that describes the basic functioning of this is IHE’s mCSD profile of which OpenLMIS leverages
Location as the source of truth for:

* Name

* Ifit’s a Geographic Zone or Facility

* Unique identifier

¢ Code(s)

* Hierarchy (e.g. Acme Clinic is in Maputo district which is in the Country Mozambique)
* Position (lat & long)

In OpenLMIS we support the ability for an implementation to “follow” a Registry that provides a complete list of
Locations. By following such a registry OpenLMIS will allow the administrator to create Facilities and Geographic
Zones that are based from the registry as a source of truth, and any updates in the Registry will be reflected in
OpenLMIS’ derived definitions.

It’s also possible for OpenLMIS to play the role of this registry which other systems may subscribe to and follow
when a more appropriate registry isn’t available, however we’d encourage implementations to take on the extra work
of implementing a more appropriate registry for this critical task.

Supply Chain Metrics & Indicators

OpenLMIS has a number of re-supply workflows that produce metrics and indicators relating to the functioning of the
supply chain. These are made available through the use of FHIR’s Measure and MeassureReport:

* Measure: Defines a metric/indicator (e.g. #days stocked out or supply status)

¢ MeasureReport: Contains the values for a Measure by Location and a period of time.

92 Chapter 1. Contents:

https://wiki.ihe.net/index.php/Mobile_Care_Services_Discovery_(mCSD)
https://www.hl7.org/fhir/location.html
https://ohie.org/facility-registry/
https://www.hl7.org/fhir/measure.html
https://www.hl7.org/fhir/measurereport.html
https://www.hl7.org/fhir/location.html

OpenLMIS Documentation, Release 3.0

This usage is intended to comply with the (upcoming) IHE mADX profile.

By publishing indicators in this way, a connector (planned) can discover new MeasureReport’s as they are pub-
lished/updated and move them to analytical systems such as DHIS2. More about this approach can be read in
OpenLMIS’ Interoperability w/ DHIS2

Cold-chain Equipment & Remote Temperature Monitoring (RTM)

OpenLMIS defines a catalog of cold-chain equipment (e.g. refrigerator), which may be imported from WHO’s PQS,
and where that equipment is located. This registry of what equipment has been installed and where it is located is
available as a list of FHIR Device.

NOTE

OpenLMIS’ acting as a registry in this case is done in-lieu of a more appropriate source of truth for cold chain
equipment installation and location. We’d be happy to learn if there’s a more appropriate open, source of truth,
system.

OpenLMIS may also receive status alerts about equipment functionality, which is normally sourced from a Remote
Temperature Monitoring (RTM) device, such as Nexleaf’s ColdTrace.

1.2.2 New Service Guidelines

OpenLMIS’ Service architecture is centered around the concept of Bounded Contexts. In this pattern we identify
Service’s by grouping similar things (noun) into a Service, and define a clear boundary between that Service and
others. Where to draw this line, and decide when to create a new Service or when to contribute to/extend an existing
Service can sometimes be difficult to judge.

A quick set of guidelines for a OpenLMIS Service:

* A Service owns its data. For example the Requisition Service owns all the data that pertains to a Requisition
and moving it through the workflow. It depends on information to help it along: facilities, programs, user’s, etc.
While these things are needed for a Requisition, they aren’t inherently a Requisition’s things. The Requisition
service owns Requisition things: Requisitions and their Line Items, Requisition Templates, etc. It coordinates
with other OpenLMIS Service’s to obtain references of those other things it needs, that it doesn’t own.

* A Service owns transactions. Operations on a Service’s things almost always occur within a transaction. We
read the state of a Requisition or write new state about that Requisition. Other Service’s may become involved,
however the transaction as it appears to the User is owned by the original Service.

* Service’s backing data stores (usually relational databases) do not know about one-another. Only Service’s know
about other Services. Because of this it’s the responsibility of the Services for maintaining referential integrity,
as Foreign Key’s can’t cross Services’s databases.

When considering creating a new Service, consider if that Service really owns its own things, and should be imple-
mented as an OpenLMIS Service, or if instead the functionality needed is a re-use of existing things in a new way, in
which case a contribution/extension should be made to an existing OpenLMIS Service. OpenLMIS does not follow
Serverless architecture at this time.

1.2. Architecture 93

https://wiki.ihe.net/index.php/Mobile_Aggregate_Data_Exchange
http://dhis2.org
https://docs.google.com/document/d/19xysVDrfBuJcqTyDd7-j3zzOSnAU0WMf6OcmSFZ20eI/edit?usp=sharing
http://apps.who.int/immunization_standards/vaccine_quality/pqs_catalogue/
https://www.hl7.org/fhir/device.html
http://build.openlmis.org/job/OpenLMIS-cce-pipeline/job/master/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html#api_cceAlerts_put
https://nexleaf.org/vaccines/
https://openlmis.atlassian.net/wiki/x/IYAKAw
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Referential_integrity
https://martinfowler.com/articles/serverless.html

OpenLMIS Documentation, Release 3.0

1.2.3 Docker

Docker Engine and Docker Compose is utilized throughout the tech stack to provide consistent builds, quicken en-
vironment setup and ensure that there are clean boundaries between components. Each deployable component is
versioned and published as a Docker Image to the public Docker Hub. From this repository of ready-to-run images on
Docker Hub anyone may pull the image down to run the component.

Development environments are typically started by running a single Service or Ul module’s development docker com-
pose. Using docker compose allows the component’s author to specify the tooling and test runtime (e.g. PostgreSQL)
that’s needed to compile, test and build and package the production docker image that all implementation’s are intended
to use.

After a production docker image is produced, docker compose is used once again in the Reference Distribution to
combine the desired deployment images with the needed configuration to produce an OpenLMIS deployment.

1.3 Components

OpenLMIS v3 uses a micro-services Architecture with different services each providing different APIs.

Each component below has its own Git repository, API docs and ERD. Many services below also have a corresponding
UI component (e.g. Auth UI, Requisition UI). The Reference UI builds all of these UI components together into one
web application.

1.3.1 Logging into the Live Documentation

The live documentation links below connect directly to our API Console docs on our CI server. To use the API you’ll
first need to get an access token from the Auth service, and then you’ll need to give that token when using one of the
RESTful operations.

Obtaining an access token:

1. Go to the Auth service’s POST /api/oauth/token

2. Click Try it in the top right of the tab

3. In the Authentication section, enter username user—-client and password changeme

4. In the Query Parameters section, enter username administrator and password password

5. Click Authorize under password

6. Enter the username administrator and password password

7. Click Post

8. In the Response box, copy the UUID value of the access_token. e.g.
"access_token": "a93bcab7-aaf5-43fe-9301-76c526698898" copy

a93bcab7-aaf5-43fe-9301-76c526698898 to use later
9. Use the Authorization Token you just copied with every request.

e In the live documentation wusing Try It, type bearer followed by the
access_token you copied earlier into the Authorization header. e.g. bearer
a93bcab7-aaf5-43£fe-9301-76c526698898

* Alternatively, in any other HTTP request tool (e.g. Postman) you may append it in the query parameters
using the access_token field. e.g. GET https://test.openlmis.org/api/facilities?
access_token=a93bcab7-aaf5-43fe-9301-76c526698898

94 Chapter 1. Contents:

https://test.openlmis.org/auth/docs/

OpenLMIS Documentation, Release 3.0

1.3.2 Auth Service

Auth Service provides RESTful API endpoints for Authentication and Authorization. It holds user security credentials,
handles password resets, and also manages API keys. It uses OAuth2. The Auth Service works with the Reference
Data service to handle role-based access controls. (See the Auth Service README for details.)

* Auth Service GitHub repo

e Auth Service README

* Auth Service Design

e Auth Service ERD

e Live Documentation for Auth API

¢ Static Documentation for Auth API

1.3.3 Fulfillment Service
Fulfillment Service provides RESTful API endpoints for orders, shipments, and proofs of delivery. It supports fulfill-
ment within OpenLMIS as well as external fulfillment using external ERP warehouse systems.

¢ Fulfillment Service GitHub repo

* Fulfillment Service README

* Fulfillment ERD

* Live Documentation for Fulfillment API

¢ Static Documentation for Fulfillment API

1.3.4 CCE Service

The Cold Chain Equipment (CCE) Service provides RESTful API endpoints for managing a CCE catalog, inventory
(tracking equipment at locations) and functional status. The catalog can use the WHO PQS.

* CCE Service GitHub repo

* CCE Service README

* CCEERD

 Live Documentation for CCE API

¢ Static Documentation for CCE API

1.3.5 HAPI FHIR Service

The HAPI FHIR Service provides RESTful API endpoints for FHIR locations. It supports keeping OpenLMIS facility
data in sync with external facility registries through FHIR.

* HAPI FHIR Service GitHub repo
 HAPI FHIR Service README
¢ Static Documentation for HAPI FHIR API

1.3. Components 95

https://github.com/OpenLMIS/openlmis-auth/
authService.html
authServiceDesign.html
erd-auth.html
http://test.openlmis.org/auth/docs/#/default
http://build.openlmis.org/job/OpenLMIS-auth-pipeline/job/369/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html
https://github.com/OpenLMIS/openlmis-fulfillment
fulfillmentService.html
erd-fulfillment.html
http://test.openlmis.org/fulfillment/docs/#/default
http://build.openlmis.org/job/OpenLMIS-fulfillment-pipeline/job/master/447/artifact/build/resources/main/api-definition.html
http://apps.who.int/immunization_standards/vaccine_quality/pqs_catalogue/
https://github.com/OpenLMIS/openlmis-cce
cceService.html
erd-cce.html
http://test.openlmis.org/cce/docs/#/default
http://build.openlmis.org/job/OpenLMIS-cce-pipeline/job/master/229/artifact/build/resources/main/api-definition.html
https://github.com/OpenLMIS/openlmis-hapifhir
hapifhirService.html
http://build.openlmis.org/job/OpenLMIS-hapifhir-pipeline/job/master/162/artifact/build/resources/main/api-definition.html

OpenLMIS Documentation, Release 3.0

1.3.6 Notification Service
The Notification Service provides RESTful API endpoints that allow other OpenLMIS services to send email notifi-
cations to users. The Notification Service does not provide a web UL

* Notification Service GitHub repo

* Notification Service README

* Notification ERD

* Live Documentation for Notification API

¢ Static Documentation for Notification API

1.3.7 Reference Data Service

The Reference Data Service provides RESTful API endpoints that provide master lists of reference data including
users, facilities, programs, products, schedules, and more. Most other OpenLMIS services depend on Reference Data
Service. Many of these master lists can be loaded into OpenLMIS in bulk using the Reference Data Seed Tool or can
be added and edited individually using the Reference Data Service APIs.

* Reference Data Service GitHub repo

» Reference Data Service README

» Reference Data ERD

* Live Documentation for Reference Data API

¢ Static Documentation for Reference Data API

1.3.8 Reference Ul
The OpenLMIS Reference Ul is a single page application that is compiled from multiple UI repositories. The Refer-
ence Ul is similar to the OpenLMIS-Ref-Distro, in that it’s an example deployment for implementers to use.
Learn about the Reference UI:

* OpenLMIS UI Overview describes the UI architecture and tooling

 UI Styleguide shows examples and best practices for many re-usable components

* Dev UI documents the build process and commands used by all Ul components
Coding and Customizing the UI:

» UI Extension Guide

* Ul Conventions

* Javascript Documentation
UI Repositories:

» Reference Ul puts all the Ul repositories into one single page application (Reference UI GitHub repo)

* Dev UI provides the build tools and commands. All other UI repositories use these build tools by including Dev
UI as a base image in docker-compose. (Dev UI GitHub repo)

» UI Components is where OpenLMIS reusable components are defined along with base CSS styles (UI Compo-
nents GitHub repo)

96 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-notification
notificationService.html
erd-notification.html
http://test.openlmis.org/notification/docs/#/default
http://build.openlmis.org/job/OpenLMIS-notification-pipeline/job/master/322/artifact/build/resources/main/api-definition.html
https://github.com/OpenLMIS/openlmis-refdata-seed
https://github.com/OpenLMIS/openlmis-referencedata/
referencedataService.html
erd-referencedata.html
http://test.openlmis.org/referencedata/docs/#/default
http://build.openlmis.org/job/OpenLMIS-referencedata-pipeline/job/master/1152/artifact/build/resources/main/api-definition.html
uiOverview.html
http://build.openlmis.org/job/OpenLMIS-ui-components-pipeline/job/master/498/artifact/build/styleguide/index.html
devUI.html
uiExtensionGuide.html
http://build.openlmis.org/job/OpenLMIS-reference-ui-pipeline/job/master/2477/artifact/build/docs/index.html#/api
referenceUI.html
https://github.com/OpenLMIS/openlmis-reference-ui
devUI.html
https://github.com/OpenLMIS/dev-ui
uiComponents.html
https://github.com/OpenLMIS/openlmis-ui-components
https://github.com/OpenLMIS/openlmis-ui-components

OpenLMIS Documentation, Release 3.0

e Auth UI connects the OpenLMIS UI to the OpenLMIS Auth Service and handles all authentication details so
other Ul repositories don’t have to (Auth UI GitHub repo)

» Ul Layout defines Ul layouts and page architecture used in the OpenLMIS UI (UI Layout GitHub repo)

¢ Reference Data Ul adds administration screens for objects defined in the OpenLMIS Reference Data Service
(Reference Data UI GitHub repo)

e Stock Management U adds screens to interact with the OpenLMIS Stock Management Service (Stock Manage-
ment UI GitHub repo)

* Fulfillment UI adds screens to connect to the OpenLMIS Fulfillment Service (Fulfillment UI GitHub repo)
* CCE UI adds screens for the OpenLMIS CCE Service. (CCE UI GitHub repo)

* Requisition UI adds screens to support the OpenLMIS Requisition Service (Requisition UI GitHub repo)

* Report Ul adds screens to interact with OpenLMIS Report Service (Report UI GitHub repo)

1.3.9 Report Service
The Report Service provides RESTful API endpoints for generating printed / banded reports. It owns report storage,
generation (including in PDF format), and seeding rights that users may be given.

* Report Service GitHub repo

* Report Service README

* Report ERD

¢ Live Documentation for Report API

e Static Documentation for Report API

1.3.10 Requisition Service

The Requisition Service provides RESTful API endpoints for a robust requisition workflow used in pull-based supply
chains for requesting more stock on a schedule through an administrative hierarchy. Requisitions are initiated, filled
out, submitted, and approved based on configuration. Requisition Templates control what information is collected on
the Requisition form for different programs and facilities.

* Requisition Service GitHub repo

* Requisition Service README

* Requisition ERD

* Live Documentation for Requisition API

* Static Documentation for Requisition API

1.3.11 Stock Management Service
The Stock Management Service provides RESTful API endpoints for creating electronic stock cards and recording
stock transactions over time.

* Stock Management Service GitHub repo

* Stock Management Service README

* Stock Management ERD

1.3. Components 97

authUI.html
https://github.com/OpenLMIS/openlmis-auth-ui/
uiLayout.html
https://github.com/OpenLMIS/openlmis-ui-layout
referencedataUI.html
https://github.com/OpenLMIS/openlmis-referencedata-ui
stockmanagementUI.html
https://github.com/OpenLMIS/openlmis-stockmanagement-ui
https://github.com/OpenLMIS/openlmis-stockmanagement-ui
fulfillmentUI.html
https://github.com/OpenLMIS/openlmis-fulfillment-ui
cceUI.html
https://github.com/OpenLMIS/openlmis-cce-ui
requisitionUI.html
https://github.com/OpenLMIS/openlmis-requisition-ui
reportUI.html
https://github.com/OpenLMIS/openlmis-report-ui
https://github.com/OpenLMIS/openlmis-report/
reportService.html
erd-report.html
http://test.openlmis.org/report/docs/#/default
http://build.openlmis.org/job/OpenLMIS-report-pipeline/job/master/154/artifact/build/resources/main/api-definition.html
https://github.com/OpenLMIS/openlmis-requisition
requisitionService.html
erd-requisition.html
http://test.openlmis.org/requisition/docs/#/default
http://build.openlmis.org/job/OpenLMIS-requisition-pipeline/job/master/824/artifact/build/resources/main/api-definition.html
https://github.com/OpenLMIS/openlmis-stockmanagement
stockmanagementService.html
erd-stockmanagement.html

OpenLMIS Documentation, Release 3.0

* Live Documentation for Stock Management API

* Static Documentation for Stock Management API

1.3.12 Diagnostics Service

The Diagnostics Service provides RESTful API endpoints for checking the system health.
* Diagnostics Service GitHub repo
* Diagnostics Service README

e Static Documentation for Diagnostics API

1.3.13 Reporting and Analytics Platform

OpenLMIS includes a reporting and analytics platform that extracts the data from each microservice, streams it to a
data warehouse and provides a scalable reporting and dashboard interface. This reporting platform is made of multiple
open source components, Apache Nifi, Apache Kafka, Druid and Apache SuperSet. This section provides an overview
of each of the components of the reporting and analytics platform.

Nifi

NiFi is used for pulling data from OpenLMIS’s APIs, merging data from the APIs into a single schema, and trans-
forming the data into a format that’s easy to query in Druid. Currently, NiFi blends data from the stockCardSummaries
API and the referenceData API. It splits stock cards into line items and merges reference data with those line items,
to have a single schema where stock card transactions (line items) contain detailed reference data like facility name,
commodity type name, etc. instead of the reference data ids that natively live on the transaction in the stock manage-
ment module. NiFi functions like an assembly line, where data moves from “processor” to processor throughout the
“flow file.”

Kafka

Kafka is used for stream processing and passing the data from NiFi to Druid. It works on a publish-subscribe model,
similar to how message queues in an enterprise messaging systems work. Kafka is run on a cluster on one or more
servers. A Kafka cluster stores streams of “records” in categories called “topics.” A record consists of three parts: a
key, a value, and a timestamp. A Kafka topic receives the transformed transaction from NiFi and publishes it to the
Druid “supervisor.” The Druid supervisor is always listening for updates from Kafka, and indexes the data immediately.

Druid

Druid is a distributed column-oriented OLAP database that the reporting stack uses for data storage and querying.
Druid is purpose-built for querying streaming data sets at scale. Each set of data is called a “data source.” JSON is the
default language used for querying in Druid and is what the DISC indicators use. Druid also includes support for SQL
using Apache Calcite, although this is not yet something we’ve explored. You can find documentation on querying in
Druid using JSON here.

Superset

Superset is the visualization layer of the reporting stack and is used to create self-service dashboards on the data in
Druid. It’s very closely integrated with Druid, and will detect the schema for each data source and the data therein.

98 Chapter 1. Contents:

http://test.openlmis.org/stockmanagement/docs/#/default
http://build.openlmis.org/job/OpenLMIS-stockmanagement-pipeline/job/master/676/artifact/build/resources/main/api-definition.html
https://github.com/OpenLMIS/openlmis-diagnostics
diagnosticsService.html
http://build.openlmis.org/job/OpenLMIS-diagnostics-pipeline/job/master/91/artifact/build/resources/main/api-definition.html
https://nifi.apache.org/
https://kafka.apache.org/
http://druid.io/
http://druid.io/docs/latest/querying/sql.html
https://calcite.apache.org/
http://druid.io/docs/latest/querying/querying.html
https://superset.apache.org/

OpenLMIS Documentation, Release 3.0

“Dimensions” are akin to columns within a relational database, and “metrics” are calculations performed on those
dimensions - e.g. count distinct, sum, min, max. Typically “metrics” are written off of numeric dimensions, with the
exception of count distinct. Superset is the UI in which we write JSON queries for Druid to calculate metrics that are
more sophisticated than the basic types outlined above.

Slices are individual visualizations and can be listed by clicking on the Charts tab along the top. Each slice has a
visualization type, a data source, and one or more metrics and dimensions that you want to display. Superset supports
the development of custom visualization types if it’s not included in the default list provided by Apache.

A dashboard is an assembly of slices onto a single page. Filters can be applied at the dashboard-level, and filter all
slices sharing the filter’s data source to the specified dimension. Filters can also be used to manipulate date ranges.
With proper security (more information below), users can save custom private or public versions of dashboards, and
drill into a particular slice to modify it and construct an ad hoc visualization.

Security is handled via User Roles and Users. A User is a distinct login with a password, and is tied to an email
address. There can only be one User per email address. A User Role is the list of actions that a User can do in
Superset. Superset contains three User Roles by default, but they can be customized by duplicating the defaults and
adding or removing permissions.

e Gamma - a view-only user who can save private views of dashboards and slices
* Alpha - a power user who is able to view all data sources, and create public dashboards and slices

¢ Admin - administrator with all access

1.4 Contributing

OpenLMIS is an open source community which appreciates the work of its contributors. Through contribution we’re
able to build a knowledgable community and make a wider impact than we would apart.

Contributing takes work so these guides aim to make that work clear and manageable:

1.4.1 Contributing to OpenLMIS

By contributing to OpenLMIS, you can help bring life-saving medicines to low- and middle-income countries. The
OpenLMIS community welcomes open source contributions. Before you get started, take a moment to review this
Contribution Guide, get to know the community and join in on the developer forum.

The sections below describe all kinds of contributions, from bug reports to contributing code and translations.

Reporting Bugs

The OpenLMIS community uses JIRA for tracking bugs. All bugs must be submitted to the OLMIS project to be
reviewed or worked on. This system helps track current and historical bugs, what work has been done, and so on.
Reporting a bug with this tool is the best way to get the bug fixed quickly and correctly.

Before you report a bug

* Search to see if the same bug or a similar one has already been reported. If one already exists, it saves you time
in reporting it again and the community from investigating it twice. You can add comments or explain what you
are experiencing or advocate for making this bug a high priority to fix quickly.

1.4. Contributing 99

https://openlmis.org/about/community/
https://groups.google.com/forum/#%21forum/openlmis-dev
https://openlmis.atlassian.net/projects/OLMIS/issues/

OpenLMIS Documentation, Release 3.0

« If the bug exists but has been closed, check to see which version of OpenLMIS it was fixed on (the Fix Version
in JIRA) and which version you are using. If it is fixed in a newer version, you may want to upgrade. If you
cannot upgrade, you may need to ask on the technical forums.

« If the bug does not appear to be fixed, you can add a comment to ask to re-open the bug report or file a new one.

Reporting a new bug

Fixing bugs is a time-intensive process. To speed things along and assist in fixing the bug, it greatly helps to send in a
complete and detailed bug report. These steps can help that along:

1. First, make sure you search for the bug in the current OpenLMIS backlog! It takes a lot of work to report and
investigate bug reports, so please do this first (as described in the section Before You Report a Bug above).

2. Create a bug in the OpenLMIS Jira Project. Include the following information in the ticket:
1. Type: Select “bug”

2. Status: Leave as “ROADMAP”. The OpenLMIS team will update the status to “TO DO” once the ticket
is ready for work and reproduced.

3. Description: Write a clear and concise explanation of what you entered and what you saw, as well as
what you thought you should see from OpenLMIS. Include the detailed steps, such as the Steps in the
example below, that someone unfamiliar with the bug can use to recreate it. Make sure this bug occurs
more than once, perhaps on a different personal computer or web browsers. Indicate the web browser (e.g.
Firefox), version (e.g. v48), OpenLMIS version, as well as any custom modifications made. Include any
time sensitivities or information of impact to support the team in prioritizing the bug.

4. Priority: Indicate the priority level based on the guidence below in the Prioritizing Bugs section. The
priority may be updated later by the Product Manager upon grooming and scheduling for work.

5. Affects Version/s: Indicate what version of the reference distribution the bug was found in.
6. Component: If you know which service is impacted by the bug, please include. If not, leave it blank.

7. Attachments: Attach any relevant screen shots, videos or documents that will help the team understand and
reproduce the bug.

3. If applicable, include any error message text, a screenshot, stack trace, or logging output in the Description or
Attachments.

4. If possible and relevant, a sample or view of the database - though don’t post sensitive information in public.

Once the bug is submitted, the OpenLMIS team will review the bugs prior to the next sprint cycle. Bugs will be
prioritized and scheduled for work based on priority, resources, and implementation needs. Follow the ticket in Jira
for updates on status and completion. Each release includes a list of bugs fixed.

Prioritizing Bugs

Each bug submission should include an initial prioritization form the reporter. Please follow the guidelines below for
the initial prioritization.

* Blocker: Cannot execute function (cannot click button, button does not exist, cannot complete action when
button is clicked). Cannot complete expected action (does not match expected results for the test case). No error
message when there is an error. OpenLMIS will not release with this bug.

¢ Critical: Error message is unactionable by the user, and user cannot complete next action (500 server error
message). Search results provided do not match expected results based on data. Poor Ul performance or acces-
sibility (user cannot tab to column or use keyboard to complete action). OpenLMIS should not release with this
bug.

100 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

* Major: Performance related (slow response time). Major asthetic issue (See UI Styleguide for reference).
Incorrect filtering, but doesn’t block users from completing tasks and executing functionality. Wrong user error
message (user does not know how to proceed based on the error message provided).

e Minor: Aesthetics (spacing is wrong, alignment is wrong, see UI Styleguide). Message key is wrong. Console
errors. Service giving the wrong error between services.

* Trivial: Anything else.

When the bug is groomed and scheduled for work, the Product Manager will set the final priority level. See Backlog
Grooming for details on the scheduling of work.

Ticket exemplars

The bugs listed are examples of bugs for their priorities. When completing exploratory testing and bugs are found,
consider these bugs as references for how to record and prioritize bugs.

Blocker:
* OLMIS-3983 - Cannot access offline requisition
* OLMIS-3509 - No error message when create user fails
e OLMIS-3501 - I can select a program that is not supported by My Facility on the Create/Initiate page
e OLMIS-2980 - Broken translations for Stock Management Adjustments page titles
* OLMIS-3508 - Batch approval sticky rows do not respond to scrolling
Critical:
* OLMIS-4076 - It’s possible to submit a requisition twice: duplicate status changes
* OLMIS-3500 - The black background is only the height of the window
Minor:
* OLMIS-3299 - Insufficient error message when submitting physical inventory with a future date
* OLMIS-2792 - Cannot add Issue for Essential Meds - demo data issue
* OLMIS-3987 - Long text not wrapped properly in modals
¢ OLMIS-3746 - Source Comments input field not displayed correctly on Firefox

Example Bug Report

Requisition is not being saved
OpenlLMIS v3.0, Postgres 9.4, Firefox v48, Windows 10

When attempting to save my in-progress Requisition for the Essential Medicines |
—program for the reporting period of Jan 2017,

I get an error at the bottom of the screen that says "Whoops something went wrong".
Steps:

1. log in

2. go to Requistions—->Create/Authorize

(continues on next page)

1.4. Contributing 101

http://build.openlmis.org/job/OpenLMIS-ui-components-pipeline/job/master/lastSuccessfulBuild/artifact/build/styleguide/section-3.html#%21
http://build.openlmis.org/job/OpenLMIS-ui-components-pipeline/job/master/lastSuccessfulBuild/artifact/build/styleguide/section-3.html#%21
https://openlmis.atlassian.net/wiki/spaces/OP/pages/106627250/Backlog+Grooming
https://openlmis.atlassian.net/wiki/spaces/OP/pages/106627250/Backlog+Grooming

OpenLMIS Documentation, Release 3.0

(continued from previous page)

3. Select My Facility (Facility F3020A - Steinbach Hospital)

4. Select Essential Medicines Program

5. Select Regular type

6. Click Create for the Jan 2017 period

7. Fill in some basic requested items, or not, it makes no difference in the error
8. Click the Save button in the bottom of the screen

9. See the error in red at the bottom. The error message is "Whoops something went,
—wrong".

I expected this to save my Requisition, regardless of completion, so that I may,,
—resume it later.

Please see attached screenshots and database snapshot.

Contributing Code

The OpenLMIS community welcomes code contributions and we encourage you to implement a new feature. Review
the following process and guidelines for contributing new features or modification to existing functionality.

Coordinating with the Global Community

In reviewing your proposed contribution, the community promotes features that meet the broad needs of many coun-
tries for inclusion in the global codebase. We want to ensure that changes to the shared, global code will not negatively
impact existing users and existing implementations. We encourage country-specific customizations to be built using
the extension mechanism. Extensions can be shared as open source projects so that other countries might adopt them.

To that end, when considering coding a new feature or modification, please follow these steps to coordinate with the
global community:

1. Create an OpenL.MIS Jira ticket and include information for the following fields:
1. Type: Select “New Feature”
2. Status: Leave as “ROADMAP”
3. Summary: One line description of the feature
4

. Component/s: If you know which service is impacted by the new feature, please include. If not, leave it
blank.

5. Description: Include the user story and detailed description of the feature. Highlight the end user value.
Include user steps and edge cases if applicable. Attach screen shots or diagrams if useful.

6. Affects Version: Leave it blank.

2. Send an email to the product committee listserv (instructions) with the link to the Jira ticket and any additional
information or context about the request. Please review the Global vs. Project-Specific Features wiki for details
on how to evaluate if a feature is globally applicable or specific to an implementation. Please clearly indicate
any time sensitivities so the product committee is aware and can be responsive.

102 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/27000853/Community
https://openlmis.atlassian.net/wiki/display/OP/Global+vs.+Project-Specific+Features

OpenLMIS Documentation, Release 3.0

3. The Product Committee will review the feature request at the next Product Committee meeting and provide
feed back or request further clarification. Once the feature request is understood, the Product Committee will
evaluate the request.

4. If the request is deemed globally applicable and acceptable for the global codebase, the Product Committee will
provide any additional guidence or direction needed in preparation for the Technical Committee review.

5. Once approved by the product committee, we request the implementer to contact the developer forum or contact
the Technical Committee to provide a proposed technical design to implement the approved feature. They can
help share relevant resources or create any needed extension points (further details below).

Extensibility and Customization

A prime focus of version 3 is enabling extensions and customizations to happen without forking the codebase.
There are multiple ways OpenLMIS can be extended, and lots of documentation and starter code is available:

* The Reference Ul supports extension by adding CSS, overriding HTML layouts, adding new screens, or replac-
ing existing screens in the UI application. See the UI Extension Guide.

» The Reference Distribution is a collection of collaborative Services, Services may be added in or swapped out
to create custom distributions.

* The Services can be extended using extension points in the Java code. The core team is eager to add more
extension points as they are requested by implementors. For documentation about this extension mechanism, see
these 3 READMESs: openlmis-example-extensions README, openlmis-stockmanagement-validator-extension
module README, and openlmis-example service README.

 Extra Data allows for clients to add additional data to RESTful resources so that the internal storage mechanism
inside a Service doesn’t need to be changed.

* Some features may require both API and UI extensions/customizations. The Technical Committee worked on
a Requisition Splitting Extension Scenario that illustrates how multiple extension techniques can be used in
parallel.

To learn more about the OpenLMIS extension architecture and use cases, see: https://openlmis.atlassian.net/wiki/x/
IYAKAw.

Extension Points

To avoid forking the codebase, the OpenLMIS community is committed to providing extension points to enable any-
one to customize and extend OpenLMIS. This allows different implementations to share a common global codebase,
contribute bug fixes and improvements, and stay up-to-date with each new version as it becomes available.

Extension points are simply hooks in the code that enable some implementations to extend the system with different
behavior while maintaining compatibility for others. The Dev Forum or Technical Committee group can help advise
how best to do this. They can also serve as a forum to request an extension point.

Developing A New Service

OpenLMIS 3 uses a microservice architecture, so more significant enhancements to the system may be achieved by
creating an additional service and adding it in to your OpenLMIS instance. See the Template Service for an example
to get started.

1.4. Contributing 103

https://openlmis.atlassian.net/wiki/display/OP/Product+Committee
https://groups.google.com/forum/#%21forum/openlmis-dev
https://openlmis.atlassian.net/wiki/display/OP/Technical+Committee
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/docs/extension_guide.md#ui-extension-guide
https://github.com/OpenLMIS/openlmis-example-extensions/blob/master/README.md#openlmis-example-extensions
https://github.com/OpenLMIS/openlmis-stockmanagement-validator-extension/blob/master/README.md#openlmis-stock-management-validator-extension-module
https://github.com/OpenLMIS/openlmis-stockmanagement-validator-extension/blob/master/README.md#openlmis-stock-management-validator-extension-module
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#openlmis-example-service
https://openlmis.atlassian.net/wiki/display/OP/Requisition+Splitting+-+Extension+Scenario+Analysis
https://openlmis.atlassian.net/wiki/x/IYAKAw
https://openlmis.atlassian.net/wiki/x/IYAKAw
https://github.com/OpenLMIS/openlmis-template-service

OpenLMIS Documentation, Release 3.0

What’s not accepted

Code that breaks the build or disables / removes needed tests to pass

— In case developers expect they may not be able to fix Sonar/tests/build issues within a working day, break-
ing changes should be reverted.

Code that doesn’t pass our Quality Gate - see the Style Guide and Sonar.

Code that belongs in an Extension or a New Service

* Code that might break existing implementations - the software can evolve and change, but the community needs
to know about it first!

Git, Branching & Pull Requests

The OpenLMIS community employs several code-management techniques to help develop the software, enable con-
tributions, discuss & review and pull the community together. The first is that OpenLMIS code is managed using
Git and is always publicly hosted on GitHub. We encourage everyone working on the codebase to take advantage of
GitHub’s fork and pull-request model to track what’s going on.

The pull request should be on a short-lived branch and processed very quickly by reviews towards merging back to
the master branch. If there is more that one developer on the same short-lived branch, then that branch is at risk of not
being short-lived. It is at risk of being more and more like a release branch under active development, and not short at
all.

The branch may have received many commits before the developer initiated the pull request, but it’s important to
remember about rebasing the changes with the master branch before creating it. Otherwise, conflicts will not allow
reviewer to merge the changes to the master branch.

OpenLMIS Jenkins runs build, test and Sonar analysis for all branches and also for pull requests. For both, the
developer needs to get the commit reviewed. In case of second of them, code review is happening in the pull request
itself. Build status makes the work easier for developers who create the pull requests and those who are reviewing
them, so they save the time and know the code is high quality.

As a developer working on a branch, you have Sonar check your work without that check effecting the Sonar report
on the master branch. SonarQube gives developers an opportunity to track the quality of code branches to ensure that
only clean, approved code gets merged into master, and when it’s not it doesn’t mislead them looking at the master
branch into thinking the overall project quality has dropped.

While creating pull request Sonar quality gates have to pass. Otherwise, the reviewer wouldn’t be able to merge the
code to the master branch.

For more about version numbers and releasing, see versioningReleasing.md.
The general flow:
1. Communicate using JIRA, the wiki, or the developer forum!
. Fork the relevant OpenLMIS project on GitHub
. Branch from the master branch to do your work

2

3

4. Commit early and often to your branch

5. Re-base your branch often from OpenLMIS master branch - keep up to date!
6

. Issue a Pull Request back to the master branch - explain what you did and keep it brief to speed review!
Mention the JIRA ticket number (e.g., “OLIMS-34") in the commit and pull request messages to activate the
JIRA/GitHub integration.

104 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE
http://sonar.openlmis.org/
http://github.com/OpenLMIS/
http://sonar.openlmis.org/

OpenLMIS Documentation, Release 3.0

While developing your code, be sure you follow the Style Guide and keep your contribution specific to doing one
thing.

Quality responsibilities

The changes made by the developer should be covered by automated tests which have to follow the Testing Guide. The
developers should make sure that all acceptance criteria are met and check whether their changes work before moving
the ticket to QA. They should cooperate with the QA person and give them some tips on how to verify changes that
are difficult to test. The developer should make the tester aware of potential issues or places that could be affected by
their changes.

DO:
* cover changes by automated tests
* cover all acceptance criteria
e initial manual testing
* give important information
* cooperate with the QA
* give advice on how to test difficult changes
e warn about potential issues
DON’T:
¢ leave changes without automated tests
* skip any of the acceptance criteria
* move changes to QA without any verification
* just assign the ticket to the QA
* snub questions
* leave the QA without any help

* conceal any gaps in the code

Feature Flags

This is a mechanism that can reduce branching code and merging large pull requests when working on some big
functionality that is not finished. Feature Flags are based on branching the code execution based on status of feature
flag. We simply put old working code in one branch while our new implementation is placed in another. This allows
us to ommit using git branches and have our code on the master branch. Moreover this new code will be deployed on
our tests servers. Feature Flag status can be changed on deployment by setting an environment variable with proper
name.

Feature Flags can be used in situations like:
* making an controversial change that could break other functionality
» making a potential performance improvement

» working on unfinished functionality on master branch

1.4. Contributing 105

https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE
https://openlmis.readthedocs.io/en/latest/conventions/testing.html

OpenLMIS Documentation, Release 3.0

» marking functionality that can be turned on/off after releasing it (those should be documented) All except for
the last case should be rather short lived flags and be removed after few weeks. Those Feature Flags give us
advantage of possibility to verify changes and logs on test server rather than locally.

Here is an example of implementation for BATCH_APPROVE_SCREEN feature flag in our UI code:
* Feature flag constant
* Run method for setting flag to our featureFlagService
» Example of feature flag usage

Here is an example of implementation for FACILITY_SEARCH_CONJUNCTION feature flag in our backend
code:

e Commit with new feature flag

Automated Testing

OpenLMIS 3 includes new patterns and tools for automated test coverage at all levels. Unit tests continue to be the
foundation of our automated testing strategy, as they were in previous versions of OpenLMIS. Version 3 introduces
a new focus on integration tests, component tests, and contract tests (using Cucumber). Test coverage for unit and
integration tests is being tracked automatically using Sonar. Check the status of test coverage at: http://sonar.openlmis.
org/. New code is expected to have test coverage at least as good as the existing code it is touching.

Continuous Integration, Continuous Deployment (CI/CD) and Demo Systems

Continuous Integration and Deployment are heavily used in OpenLMIS. Jenkins is used to automate builds and deploy-
ments trigged by code commits. The CI/CD process includes running automated tests, generating ERDs, publishing
to Docker Hub, deploying to Test and UAT servers, and more. Furthermore, documentation of these build pipelines
allows any OpenLMIS implementation to clone this configuration and employ CI/CD best practices for their own
extensions or implementations of OpenLMIS.

See the status of all builds online: http://build.openlmis.org/
Learn more about OpenLMIS CI/CD on the wiki: CI/CD Documentation

Language Translations & Localized Implementations

OpenLLMIS 3 has translation keys and strings built into each component, including the API services and UI compo-
nents. The community is encouraging the contribution of translations using Transifex, a tool to manage the translation
process. Because of the micro-service architecture, each component has its own translation file and its own Transifex
project.

See the OpenLMIS Transifex projects and the Translations wiki to get started. See also the UI Extenion guide for
details about how implementations can override UI strings with their own custom messages.

Licensing

NOTE

licensing of a contribution here only applies for code that will be owned by the OpenLMIS’ owner. i.e. code that lives
in an official OpenLLMIS Repository (e.g. https://github.com/openlmis or https://gitlab.com/openlmis).Contributions
which utilize an extension mechanism, such a new Service that lives outside of an OpenLMIS repository do not need to

106 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/src/requisition-batch-approval/batch-approve-screen-flag.constant.js
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/src/requisition-batch-approval/requisition-batch-approve.flag.run.js
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/src/requisition-approval/requisition-approval.routes.js#L70
https://github.com/OpenLMIS/openlmis-referencedata/commit/8aec45a2020e2628feaf4505645b89699314d2ab
https://github.com/OpenLMIS/openlmis-template-service/blob/master/TESTING
http://sonar.openlmis.org/
http://sonar.openlmis.org/
http://build.openlmis.org/
https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=87195734
https://www.transifex.com/openlmis/public/
https://openlmis.atlassian.net/wiki/display/OP/Translations
http://docs.openlmis.org/en/latest/components/uiExtensionGuide.html#messages

OpenLMIS Documentation, Release 3.0

abide to this licensing section, as that contribution is more to the wider open source community, than to the OpenLMIS
project specifically.

OpenLMIS’ code is licensed under an open source license to enable everyone contributing to the codebase and the
community to benefit collectively. As such all contributions must:

1. Sign the OpenLMIS’ Contributor Assignment Agreement (CAA), this gives the project flexibility.

» With approval, a contributor may opt to sign a Contributor License Agreement (CLA), this allows the
contributor to retain copyright, while allowing the project license flexibility.

2. Submit your signed CAA or CLA to the OpenLMIS Governance Committee (todo: establish governance pro-
cess).

3. Mark the appropriate copyright and license header using the OpenLLMIS license (see below).

4. No exceptions.

Modifying existing code in a file

If you signed a CAA:

* Retain the copyright mark, e.g. Copyright © 2017 VillageReach.

» Update the copyright year to a range. e.g. if it was 2016, update it to read 2016-2017
If you signed a CLA:

* Retain the existing copyright mark, e.g. Copyright © 2017 VillageReach, and add your own one line
down: Copyright © <INSERT YEAR AND COPYRIGHT HOLDER HERE>.

* Where copyright holder should likely read your organization’s name.

* Where year is the current year.

Adding new code in a new file

If you signed a CAA:
* Copy the license file header template, LICENSE-HEADER, to the top of the new file.

« Where it says Copyright © <INSERT YEAR AND COPYRIGHT HOLDER HERE>, insert
VillageReach.

e Update the copyright year to the current year.
If you signed a CLA:
* Copy the license file header template, LICENSE-HEADER, to the top of the new file.

* Add the year and your name or your organization’s name to the license header. e.g. if it
reads Copyright © <INSERT YEAR AND COPYRIGHT HOLDER HERE>, update it to Copyright
© 2017 MyOrganization

For complete licensing details be sure to reference the LICENSE file that comes with this project.

Feature Roadmap

The Living Roadmap can be found here The backlog can be found here

1.4. Contributing 107

https://github.com/OpenLMIS/openlmis-ref-distro/blob/master/LICENSE-HEADER
https://github.com/OpenLMIS/openlmis-ref-distro/blob/master/LICENSE-HEADER
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
https://openlmis.atlassian.net/secure/RapidBoard.jspa?rapidView=46&view=planning.nodetail

OpenLMIS Documentation, Release 3.0

Suggest a New Feature

The OpenLMIS community welcomes suggestions and requests for new features, functionality or improvements to
OpenLMIS. Please note that suggested new features may or may not be scheduled for work depending on re-
sourcing and value to the community. If this feature is needed for a specific implementation in a timely fashion
we suggest the team consider building the feature and contributing it back to core. See the section on Con-
tributing Code above for details. Follow the steps below so that the community can review, evaluate, and potentially
schedule the new feature for work:

1. Create an OpenLLMIS Jira ticket and include information for the following fields:

—_

AWoN

6.

. Type: Select “New Feature”
. Status: Leave as “ROADMAP”
. Summary: One line description of the feature

. Component/s: If you know which service is impacted by the new feature, please include. If not, leave it
blank.

. Description Include the user story and detailed description of the desired new feature, functionality or
improvement. Highlight the end user value. Include user steps and edge cases if applicable. Attach screen
shots or diagrams if useful in building a shared understanding of the suggested feature.

Affects Version: Leave it blank.

2. Send an email to the product committee listserv (instructions) with the link to the Jira ticket and any additional in-
formation or context about the suggested feature and functionality. Please review the Global vs. Project-Specific
Features wiki for details on how to evaluate if a feature is globally applicable or specific to an implementation.
Please clearly indicate any time sensitivities so the product committee is aware and can be responsive.

3. The Product Committee will review the feature request at the next Product Committee meeting and provide
feed back or request further clarification. Once the feature request is understood, the Product Committee will
evaluate the request to determine the next steps.

* The Product Committee will set the priority of the feature and keep the Jira ticket updated with information

on scheduling, questions, and if any additional information is needed.

4. Follow the ticket in Jira or attend Product Committee meetings to keep updated on the status of the suggested
new feature.

Contributing Documentation

Writing documentation is just as helpful as writing code. See Contribute Documentation.

References

* Developer Documentation (ReadTheDocs) - http://docs.openlmis.org/

Developer Guide (in the wiki) - https://openlmis.atlassian.net/wiki/display/OP/Developer+Guide

Architecture Overview (v3) - https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageld=51019809

API Docs - http://docs.openlmis.org/en/latest/api

Database ERD Diagrams - http://docs.openlmis.org/en/latest/erd/

GitHub - https://github.com/OpenLMIS/

JIRA Issue & Bug Tracking - https://openlmis.atlassian.net/projects/OLMIS/issues

108

Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/27000853/Community
https://openlmis.atlassian.net/wiki/display/OP/Global+vs.+Project-Specific+Features
https://openlmis.atlassian.net/wiki/display/OP/Global+vs.+Project-Specific+Features
https://openlmis.atlassian.net/wiki/display/OP/Product+Committee
http://docs.openlmis.org/en/latest/contribute/contributeDocs.html
http://docs.openlmis.org/
https://openlmis.atlassian.net/wiki/display/OP/Developer+Guide
https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=51019809
http://docs.openlmis.org/en/latest/api
http://docs.openlmis.org/en/latest/erd/
https://github.com/OpenLMIS/
https://openlmis.atlassian.net/projects/OLMIS/issues

OpenLMIS Documentation, Release 3.0

* Wiki - https://openlmis.atlassian.net/wiki/display/OP
* Developer Forum - https://groups.google.com/forum/#!forum/openlmis-dev

» Release Process (using Semantic Versioning) - https://openlmis.atlassian.net/wiki/display/OP/Releases

OpenLMIS Website - https://openlmis.org

1.4.2 Contribute documentation

This document briefly explains the process of collecting, building and contributing the documentation to OpenLMIS
v3.

Build process

The developer documentation for OpenLMISv3 is scattered across various repositories. Moreover, some of the artifacts
are dynamically generated, based on the current codebase. All that documentation is collected by a single script.
In order to collect a new document to be able to include it in the developer documentation, it must be placed in
the collect-docs.py script. The documentation is built after every push event and is triggered by GitHub webhook.
It then gets published via ReadTheDocs at http://docs.openlmis.org. The static documentation files and the build
configuration is kept on the openlmis-ref-distro repository, in the docs directory. It is also possible to rebuild and
upload the documentation to Read the Docs manually, by running the OpenLMIS-documentation Jenkins job.

Contributing

Depending on the part of the documentation that you wish to contribute to, a specific document in one of the GitHub
repositories must be edited. The list below explains where the particular pieces of the documentation are fetched from,
in order to be able to locate and edit them.

Developer docs - Services: The documentation for each service is taken from the README.md file located on that
repository.

Developer docs - Style guide: This is the code style guide, located in the openlmis-template-service in file STYLE-
GUIDE.md.

Developer docs - Testing guide: This is the document that outlines the strategy and rules for test development. It is
located in the openlmis-template-service in TESTING.md file.

Developer docs - Error Handling: This document outlines how errors should be managed in Services and how they
should be reported through API responses.

ERD schema: The ERD schema for certain services is generated by Jenkins. The static file that links to the schema
is located together with the documentation and the schemas itself are built and kept on Jenkins as build artifacts. The
link always points to the ERD schema of the latest, successful build.

UI Styleguide: The configuration of the styleguide is located on the openlmis-requisition-refUI. The actual Styleguide
is generated by the Jenkins job and uploaded to the gh-pages branch on the same repository.

API documentation: This contains the link to the Swagger documentation for the API endpoints. It is built by the
Jenkins job and kept as a build artifact, based on the content of the RAML file. The link always points to the API
documentation of the latest successful build.

1.4. Contributing 109

https://openlmis.atlassian.net/wiki/display/OP
https://groups.google.com/forum/#%21forum/openlmis-dev
https://openlmis.atlassian.net/wiki/display/OP/Releases
https://openlmis.org
http://docs.openlmis.org
https://github.com/OpenLMIS
https://github.com/OpenLMIS

OpenLMIS Documentation, Release 3.0

1.5 Conventions

1.5.1 The License Header
Each java or javascript file in the codebase should be annotated with the proper copyright header. This header should
be also applied to singnificant html files.

We use checkstyle to check for it being present in Java files. We also check for it during our Grunt build in javascript
files.

The current copyright header format can be found here.

Replace the year and holder with appropriate holder, for example:

Copyright © 2017 VillageReach

1.5.2 OpenLMIS Community Principles (2015)

The OpenLMIS community principles aims to help contributors to the project create quality contributions by illimu-
nating some of the intentions behind the OpenLMIS principles and influence better design and implementation of
OpenLMIS features.

This document is an outcome of the 2015 Community meeting and is copied (with minor modification) from its
original source.

Principles

Open Source

OpenLMIS is offered under an open source license, which means that everyone has the right to use
and modify the software without paying a license fee. Changes and additions are made available to the
community under the terms of the license via our code contribution process.

OpenLLMIS is built and licensed under an Open Source license. In addition to the project being Open Source,
OpenLMIS strives to always be available to develop on, build, deploy, use and generally contribute to using simi-
larly licensed technologies. In practice this means that strong preference is given to contributions and their dependant
technologies that are licensed similarly. Contributions should aspire to contribute:

* Code and other IP licensed in a compatible license as OpenLMIS. Strong preference is given to the OpenLMIS
license for simplicity.

» Dependencies on third-party libraries / tools should also be open source and freely distributable.

Appropriate

OpenLMIS is designed with a focus on users in low resource and capacity environments. Representatives
from these environments are welcomed and valued members of the community and their insights help
shape the software.

OpenLMIS is built and used by those in low-resource settings:

¢ Internet is often slow and intermittent. Features should be designed with these limitations in mind. For ex-
ample, most work-flows should be optimized for slow internet and even work-flows with periods of non-
connectivity. Administrative screens however can often take shortcuts and assume that their users will have better
internet connectivity.

110 Chapter 1. Contents:

https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/LICENSE-HEADER
https://github.com/OpenLMIS/open-lmis/blob/master/STYLE-GUIDE
https://github.com/OpenLMIS/openlmis-ref-distro/blob/master/LICENSE
http://opensource.org/osd

OpenLMIS Documentation, Release 3.0

Processes not only vary and need to be configurable by program and implementation, they oftentimes areused
in parallel or supplement traditional paper processes. Data collection and forms should strive to be configurable
to match the official paper form and be able to restore it historically.

Screens are often older and come with lower resolutions than the latest and greatest. 800x600 px screens are
not uncommon. Additionally, many work-flows that would be used by someone at the last mile will be used by
someone with a smaller tablet or even a phone.

Scalability for OpenLMIS is the capability of use in large hospitals to community health workers nation wide.
The workflow from data collection, processing through to report delivery should be designed and implemented
for thousands of users with thousands of physical facilities.

Security is important for OpenLMIS to be trusted to run nation-wide government supply chains to NGO initia-
tives.A role-based security system contains users to see and do only what is required for their role. Care should
be given in designing features and running implementations to keep OpenLMIS secure.

Configurable

OpenLMIS flexibly supports the varied needs of low-resource health supply chains. OpenLMIS strives
to be designed so that countries can configure and use the software with minimal training and technical
capacity.

Supply chains vary. Reporting requirements, process differences, language, and even the look and feel need to be
as configurable as is reasonable for OpenLMIS to continue to deliver on its mission. In order to accomplish this,
OpenLLMIS contributions need to at a minimum continue to deliver:

Language - Language tags allow messages/Ul/email/API/etc to be translated into many different languages and
allows the user to switch the language displayed easily. OpenLMIS has standardized development in English
for consistency and supports translation projects as the opportunity arises.

Dates - Date formatting also varies by locality. As such any date or time printed should allow for custom
formatting.

Programs allow for OpenLMIS to configure the vertical supply chains present in many low- and middle-
income countries independently. e.g. a Malaria program may collect different data by different people than
an HIV/AIDS program.

Schedules allow for a Program to define regular or even planned irregularity for timing of program related
events.Monthly and quarterly are typical examples, however a schedule may have periods where a monthly
schedule may have to be extended to a couple months when seasonal monsoons slow transportation networks.

Variable and often Program-segregated administrative hierarchies are needed to ensure programs can operate
independently and reflect the common situation of programs not sharing staff.

A singular geographic hierarchy is currently in use. Unlike many features of OpenLMIS, this definition is not
segregated by Program and is meant to reflect that physical facilities often are part of one official geographic
hierarchy. In the future this may need to be Program-segregated. For now utilizing administrative hierarchies
can be used instead.

Replenishment cycles also vary by Program in an implementation. The two standard processes, distribution
(push) and allocation (pull), are present and in use in OpenLMIS. These two different types of processes differ
by who starts them, their cycle, and also how re-supply calculations/projections are made.

Interoperable

OpenLMIS strives to be interoperable with other systems in a larger health information ecosystem.

1.5. Conventions 111

OpenLMIS Documentation, Release 3.0

Achieving interoperability requires a balance between allowing for flexibility and controlling for consis-
tency.OpenLMIS aims to achieve this by:

designing for and implementing customizable data storage, processing and reporting that’s accessible through
published APIs & formats.

encouraging expansion and customization through modularity.

maintaining a consistent and robust data-model and reporting interfaces so that a field/column/report means the
same thing from implementation to implementation.

maintaining a consistent look & feel so that using OpenLMIS anywhere always looks and behaves in a pre-
dictable manner.

Collaborative

OpenLMIS users benefit from the diversity of perspectives and resources that community members bring
to the table, which results in a more flexible and powerful system than what any one organization could
create. The community acknowledges that successful country implementation requires close collaboration
among partners and stakeholders to ensure success.

documentation is needed to communicate how to use a contribution and the intention behind it. This can take
many different forms and it’s left to the contributor to determine and provide appropriate levels of documen-
tation. The community strongly discourages contributions that are light on documentation. It’s suggested that
documentation is prioritized for: published APIs, designs and code contracts. Additionally documenting the
why over the how is oftentimes more useful over a longer period of time.

sharing code often comes with mis-matched expectations and undesired consequences, so it’s not unexpected
that development often occurs behind closed-doors until “it’s ready”. The OpenLMIS project however aims
to be open so all code that is part of the OpenLMIS project is found in the OpenLMIS organization. The
recommended approach to collaborating is documented.

sharing ideas, work items, roadmaps, feature requests, knowledge bases, etc. is vital to know where the project
is going and encourage participation. To that end OpenLMIS encourages all participants to utilize the public
forums, chat, project management, and wiki spaces to collaborate. An active list is found at docs.openlmis.org.

automated testing ensures functionality from developer to developer and implementation to implementation is
behaving as expected over time. OpenLMIS doesn’t currently define code-coverage targets, however, the project
expects that appropriate test coverage is provided with every contribution and highly scrutinizes existing tests.
Since testing is so important, calling out the kinds of testing done and not done and why can greatly help the
review process for contributions.

Supportive

The community acts as stewards for the implementation, configuration, training on, operation, and sus-
tainment of OpenLMIS. The community strives to be knowledge experts on the problems that OpenLMIS
attempts to solve.

1.5.3 Non-functional Requirements

Note:

WIP

Non-functional requirements (NFR) are those that impose constraints on the design of OpenLMIS. The goal of this
document is to ensure the OpenLMIS community has a consistent understanding of how these requirements are dis-
covered, defined and prioritized.

112

Chapter 1. Contents:

https://github.com/OpenLMIS/
http://docs.openlmis.org

OpenLMIS Documentation, Release 3.0

Process

NFR as stated previously impose specific constraints on OpenLMIS. These constraints if defined without careful
consideration may result in significant increases to level of effort and a focus taken away from other areas.

When defining NFR we need to:

Be domain focused: some NFR will be defined in terms of the problem domain. e.g. For a Report and
Requisition, we can identify the number of Reports and Requisitions the system will handle. We typically
might consider the # of concurrent Requisition’s being submitted, the total number the system might process a
day/week/year/etc.

Be context aware: NFR often need to be aware of the context they’re being defined in. For OpenLMIS this
context might be the user persona combined with the problem domain. So for our Requisition’s example above,
we might focus on the NFR of the # number Requisitions that a Zonal Warehouse Manager might need to
process day/week/year/etc. Further we would do well to add to the context what sort of network connection and
device characteristics the user persona might typically be expected to have. In this case we’d add that the Zonal
Warehouse Manager might be expected to have a recent Laptop with 90 % 3G Internet availability, whereas a
Community Health Worker might only expect to have 30 % 2G Internet availability and use a Android phone
2-3 generations old.

Focus on defining NFR quantitatively, and testing automatically. e.g. we could define response time needs to be
< 500ms, and therefore we can automatically test that our response time meets this requirement.

Bring the user experience and technical leaders together. A classic example of only involving one group is to
ask stakeholders “how often should the application be available?” to which they’d rightly respond “all the time”.
This 100% availability metric can be exceptionally difficult to obtain and leads to costly investments when in
reality some gaps in availability are likely preferred considering the costs. By bringing these groups together
we’ll get a more reasonable requirement: The application must be available 90% of the time, and the 10% of the
time it is not should be scheduled for non-work hours and days in Central Africa Timezone.

In practice for the OpenLMIS community, the two communities that need to agree on NFR are the Product Committee
and the Technical Committee.

Auditability

All concepts in OpenLMIS should support an audit log which can track every state change with:

A time-stamp including timezone of when the change occurred.

A unique identifier for the user account that made the change. Or if the change was not directly caused by a user
that should be clear.

The before and after states of the change.

Performance

For performance we focus on these measures:

Response time (<= 500ms)

Concurrency

Size (objects or rows) of stored data.

Size of working data. e.g. off-line or in-process stored locally and / or that a user works with at any given time.
Render time

Network latency (typically characterized by 2G or 3G).

1.5. Conventions 113

OpenLMIS Documentation, Release 3.0

* CPU (typically characterized by a fraction of a “mordern” processor).

And we focus on load testing over stress or other types of testing (e.g. stress or endurance). For more on how we test,
see Performance Testing and Functional Testing.

Availability

¢ Offline
e #0f Os

Configuration Management
Security

Data integrity

* ACID

Recoverability

¢ Drafts
* Backups

¢ Distributed devices

Interoperability

* mCSD w/ FHIR
GS1 GTIN and GLN
GS1 EDI

* OAuth2

REST w/ JSON

Usability

e Screen size
¢ Browser

¢ Affordances

Todo

1. Clarify concurrency in Performance.
2. Clarify network and CPU in performance - currently not given in highly reproducible terms.
3. Clarify render time in performance

4. Clarify the 2 size of data in Performance - how will we define it here across domains? Or use links?

114 Chapter 1. Contents:

performance.html
https://github.com/OpenLMIS/openlmis-functional-tests/blob/master/README.md

OpenLMIS Documentation, Release 3.0

5. Move functional testing into RTD.
6. Fill in Interoperability

7. Fill in Data integrity

8. Fillinetc...

1.5.4 Service Conventions

OpenLMIS Service Style Guide

This is a WIP as a style guide for an Independent Service. Clones of this file should reference this definition.

Java

OpenLLMIS has adopted the Google Java Styleguide. These checks are mostly encoded in Checkstyle and should be
enforced for all contributions.

Some additional guidance:

* Try to keep the number of packages to a minimum. An Independent Service’s Java code should generally all be
in one package under org.openlmis (e.g. org.openlmis.requisition).

* Sub-packages below that should generally follow layered-architecture conventions; most (if not all) classes
should fit in these four: domain, repository, service, web. To give specific guidance:

Things that do not strictly deal with the domain should NOT go in the domain package.

Serializers/Deserializers of domain classes should go under domain, since they have knowledge of do-
main object details.

DTO classes, belonging to serialization/deserialization for endpoints, should go under web.

Exception classes should go with the classes that throw the exception.
— We do not want separate sub-packages called exception, dto, serializer for these purposes.

e When wanting to convert a domain object to/from a DTO, define Exporter/Importer interfaces for the domain
object, and export/import methods in the domain that use the interface methods. Then create a DTO class that
implements the interface methods. (See Right and RightDto for details.)

— Additionally, when Exporter/Importer interfaces reference relationships to other domain objects, their Ex-
porter/Importer interfaces should also be used, not DTOs. (See example.)

* Even though the no-argument constructor is required by Hibernate for entity objects, do not use it for object
construction (you can set access modifier to private); use provided constructors or static factory methods. If
one does not exist, create one using common sense parameters.

RESTHful Interface Design & Documentation

Designing and documenting
Note: many of these guidelines come from Best Practices for Designing a Pragmatic RESTful APL
* Result filtering, sorting and searching should be done by query parameters. Details

* Return a resource representation after a create/update. Details

1.5. Conventions 115

https://groups.google.com/d/msg/openlmis-dev/CCwBglBFbpk/pY406WbkAAAJ
https://google.github.io/styleguide/javaguide.html
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/domain/Right.java
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/dto/RightDto.java
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/domain/Role.java#L219
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#advanced-queries
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#useful-post-responses

OpenLMIS Documentation, Release 3.0

» Use camelCase (vs. snake_case) for names, since we are using Java and JSON. Details

* Don’t use response envelopes as default (if not using Spring Data REST). Details

* Use JSON encoded bodies for create/update. Details

 Use a clear and consistent error payload. Details

* Use the HTTP status codes effectively. Details

* Resource names should be pluralized and consistent. e.g. prefer requisitions, never requisition.
* Resource representations should use the following naming and patterns:

— Essential: representations which can be no shorter. Typically this is an id and a code. Useful most
commonly when the resource is a collection, e.g. /api/facilities.

— Normal: representations which typically are returned when asking about a specific resource. e.g. /api/
facilities/{1id}. Normal representations define the normal transactional boundary of that resource,
and do not include representations of other resources.

— Optional: a representation that builds off of the resource’s essential representation, allowing for the client
to ask for additional fields to be returned by specifying a fields query parameter. The support for these
representations is completely, as the name implies, optional for a resource to provide. Details

— Expanded: a representation which is in part, not very RESTful. This representation allows for other,
related, resources to be included in the response by way of the expand query parameter. Support for
these representations is also optional, and in part somewhat discouraged. Details

* A PUT on a single resource (e.g. PUT /facilities/{id}) is not strictly an update; if the resource does not exist,
one should be created using the specified identity (assuming the identity is a valid UUID).

» Exceptions, being thrown in exceptional circumstances (according to Effective Java by Joshua Bloch), should
return 500-level HTTP codes from REST calls.

» Not all domain objects in the services need to be exposed as REST resources. Care should be taken to design
the endpoints in a way that makes sense for clients. Examples:

— RoleAssignments are managed under the users resource. Clients just care that users have roles; they
do not care about the mapping.

— RequisitionGroupProgramSchedules are managed under the requisitionGroups resource.
Clients just care that requisition groups have schedules (based on program).

* RESTful endpoints that simply wish to return a JSON value (boolean, number, string) should wrap that value in
a JSON object, with the value assigned to the property “result”. (e.g. { "result": true })

— Note: this is to ensure compliance with all JSON parsers, especially ones that adhere to RFC4627, which
do not consider JSON values to be valid JSON. See the discussion here.

e When giving names to resources in the APIs, if it is a UUID, its name should have a suffix of “Id” to show
that. (e.g. /api/users/{userId}/fulfillmentFacilities has query parameter rightId to get
by right UUID.)

e If you are implementing HTTP caching for an API and the response is a DTO, make sure the DTO implements
equals() and hashCode() using all its exposed properties. This is because of potential confusion of a property
change without a change of ETag.

We use RAML (0.8) to document our RESTful APIs, which are then converted into HTML for static API documenta-
tion or Swagger UI for live documentation. Some guidelines for defining APIs in RAML:

* JSON schemas for the RAML should be defined in a separate JSON file, and placed in a schemas subfolder in
relation to the RAML file. These JSON schema files would then be referenced in the RAML file like this (using
role as an example):

116 Chapter 1. Contents:

http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#snake-vs-camel
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#envelope
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#json-requests
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#errors
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#limiting-fields
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#autoloading
http://stackoverflow.com/questions/18419428/what-is-the-minimum-valid-json
http://docs.openlmis.org/en/latest/conventions/performanceTips.html#e-tag-and-if-none-match

OpenLMIS Documentation, Release 3.0

- role: !include schemas/role. json
— roleArray: |
{
"type": "array"’
"items": { "type": "object", "Sref": "schemas/role.json" }
}

— (Note: this practice has been established because RAML 0.8 cannot define an array of a JSON schema for
a request/response body (details). If the project moves to the RAML 1.0 spec and our RAML testing tool
adds support for RAML 1.0, this practice might be revised.)

Pagination

Many of the GET endpoints that return collections should be paginated at the API level. We use the following guide-
lines for RESTful JSON pagination:

* Pagination options are done by query paramaters. i.e. use /api/someResources?page=2 and not /api/
someResources/page/2.

* When an endpoint is paginated, and the pagination options are not given, then we return the full collection.
i.e. a single page with every possible instance of that resource. It’s therefore up to the client to use collection
endpoints responsibly and not over-load the backend.

* A paginated resource that has no items returns a single page, with it’s content attribute as empty.
* Resource’s which only ever return a single identified item are not paginated.
* For Java Service’s the query parameters should be defined by a Pageable and the response should be a Page.

* Before executing any endpoint, parameters are validated. Currently checked parameters are page and
size. Validator is called by interceptor which is registered with InterceptorRegistry by using
CustomWebMvcConfigurerAdapter. The endpoint return bad request error with an error message when
page parameter is defined and size parameter is not specified or size parameter is not greater than zero.

Example Request (note that page is zero-based):

GET /api/requisitions/search?page=0&size=5&access_token=<sometoken>

Example Response:

{

"content": [

{

}
]I
"totalElements": 13,
"totalPages": 3,

"last": false,
"numberOfElements": 5,
"first": true,

"sort": null,

"size": 5,

"number": 0

1.5. Conventions 117

http://forums.raml.org/t/set-body-to-be-array-of-defined-schema-objects/1566/3
https://github.com/nidi3/raml-tester
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/domain/Pageable.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/domain/Page.html

OpenLMIS Documentation, Release 3.0

Postgres Database

For guidelines on how to write schema migrations using Flyway, see Writing Schema Migrations (Using Flyway).

* Each Independent Service should store its tables in its own schema. The convention is to use the Service’s name
as the schema. e.g. The Requisition Service uses the requisition schema

¢ Tables, Columns, constraints etc should be all lower case.
* Table names should be pluralized. This is to avoid most used words. e.g. orders instead of order
¢ Table names with multiple words should be snake_case.

e Column names with multiple words should be merged together. e.g. getFirstName () would map to
firstname

¢ Columns of type uuid should end in ‘id’, including foreign keys.

RBAC (Roles & Rights) Naming Conventions

* Names for rights in the system should follow a RESOURCE_ACTION pattern and should be all uppercase, e.g.
REQUISITION_CREATE, or FACILITIES_MANAGE. This is so all of the rights of a certain resource can be
ordered together (REQUISITION_CREATE, REQUISITION_AUTHORIZE, etc.).

i18n (Localization)
Transifex and the Build Process

OpenLMIS v3 uses Transifex for translating message strings so that the product can be used in multiple languages.
The build process of each OpenLMIS service contains a step to sync message property files with a corresponding
Transifex project. Care should be taken when managing keys in these files and pushing them to Transifex.

» If message keys are added to the property file, they will be added to the Transifex project, where they are now
available to be translated.

* If message keys or strings are modified in the property file, any translations for them will be lost and have to be
re-translated.

 If message keys are removed in the property file, they will be removed from the Transifex project. If they are
re-added later, any translations for them will be lost and have to be re-translated.

Naming Conventions

These naming conventions will be applicable for the messages property files.

* Keys for the messages property files should follow a hierarchy. However, since there is no official hierarchy
support for property files, keys should follow a naming convention of most to least significant.

» Key hierarchy should be delimited with a period (.).
¢ The first portion of the key should be the name of the Independent Service.

* The second portion of the key should indicate the type of message; error for error messages, message for
anything not an error.

The third and following portions will further describe the key.

118 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

* Portions of keys that don’t have hierarchy, e.g. a.b.code.invalidLength and a.b.code.
invalidFormat, should use camelCase.

» Keys should not include hyphens or other punctuation.
Examples:

e requisition.error.product.code.invalid - an alternative could be requisition.error.
productCode.invalid if code is not a sub-section of product.

* requisition.message.requisition.created - requisition successfully created.
e referenceData.error.facility.notFound - facility not found.

Note: Ul-related keys (labels, buttons, etc.) are not addressed here, as they would be owned by the Ul, and not the
Independent Service.

Testing

See the Testing Guide.

Docker

Everything deployed in the reference distribution needs to be a Docker container. Official OpenLMIS containers are
made from their respective containers that are published for all to see on our Docker Hub.

* Dockerfile (Image) best practices

* Keep Images portable & one-command focused. You should be comfortable publishing these images publicly
and openly to the DockerHub.

» Keep Containers ephemeral. You shouldn’t have to worry about throwing one away and starting a new one.
« Utilize docker compose to launch containers as services and map resources
* An OpenLMIS Service should be published in one image found on Docker Hub

* Services and Infrastructure that the OpenLLMIS tech committee owns are published under the “openlmis” names-
pace of docker and on the Docker Hub.

* Avoid Docker Host Mounting, as this doesn’t work well when deploying to remote hosts (e.g. in CI/CD)

Gradle Build

Pertaining to the build process performed by Gradle.

* Anything generated by the Gradle build process should go under the build folder (nothing generated should
be in the src folder).

Logging

Each Service includes the SLF4]J library for generating logging messages. Each Service should be forwarding these
log statements to a remote logging container. The Service’s logging configuration should indicate the name of the
service the logging statement comes from and should be in UTC.

What generally should be logged:

1.5. Conventions 119

https://hub.docker.com/u/openlmis/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/tutorials/dockervolumes/#/mount-a-host-directory-as-a-data-volume

OpenLMIS Documentation, Release 3.0

* DEBUG - should be used to provide more information to developers attempting to debug what happened. e.g.
bad user input, constraint violations, etc

* INFO - to log processing progress. If the progress is for a developer to understand what went wrong, use
DEBUG. This tends to be more useful for performance monitoring and remote production debugging after a
client’s installation has failed.

Less used:

* FATAL - is reserved for programming errors or system conditions that resulted in the application (Service)
terminating. Developers should not be using this directly, and instead use ERROR.

* ERROR - is reserved for programming conditions or system conditions that would have resulted in the Service
terminating, however some safety oriented code caught the condition and made it safe. This should be reserved
for a global Service level handler that will convert all Exceptions into a HTTP 5xx level exception.

Audit Logging

OpenLMIS aims to create a detailed audit log for most all actions that occur within the system. In practice this means
that as a community we want all RESTful Resources (e.g. /api/facilities/{id}) to also have a full audit log
for every change (e.g. /api/facilities/{id}/auditLog) and for that audit log to be accessible to the user
in a consistent manner.

A few special notes:

* When a resource has line items (e.g. Requisition, Order, PoD, Stock Card, etc), the line item would not have its
own REST Resource, in that case if changes are made to a line item, those changes need to be surfaced in the
lint item’s parent. For example, if a change is made to a Requisition Line Item, then the audit log for that change
is available in the audit log for the Requisition, as one can’t retrieve through the API the single line item.

* There are a few cases where audit logs may not be required by default. These cases typically involve the
resource being very transient in nature: short drafts, created Searches, etc. When this is in question, explore the
requirements for how long the resource needs to exist and if it forms part of the system of record in the supply
chain.

Most Services use JaVers to log changes to Resources. The audits logs for individual Resources should be exposed
via endpoints which look as follows:

/api/someResources/{id}/auditLog

Just as with other paginated endpoints, these requests may be filtered via page and size query paramaters: /api/
someResources?page=0&size=10

The returned log may additionally be filtered by author and changedPropertyName query paramaters. The later
specifies that only changes made by a given user should be returned, whereas the later dictates that only changes
related to the named property should be shown.

Each /api/someResources/{id}/auditLog endpoint should return a 404 error if and only if the specified
{id} does not exist. In cases where the resource id exists but lacks an associated audit log, an empty array representing
the empty audit should be returned.

Within production services, the response bodies returned by these endpoints should correspond to the JSON schema
defined by auditLogEntryArray within /resources/api-definition.yaml. It is recognized and accepted that this differs
from the schema intended for use by other collections throughout the system. Specifically, whereas other collections
which support paginated requests are expected to return pagination-related metadata (eg: “totalElements,” “total-
Pages”) within their response bodies, the responses proffered by /auditLog endpoints do not retur pagination related
data.

120 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

Testing Guide

This guide is intended to layout the general test strategy for OpenLMIS.

OpenLMIS, like many software projects, relies on testing to guide development and prevent regressions. To effect this,
we’ve adopted a standard set of tools to write and execute our tests, and categorize them to understand what types of
tests we have, who writes them, when they’re written, run, and where they live.

The objective of manual and automatic tests is to catch bugs as quickly as possible after code is committed to make it
less time-consuming to fix. We plan to automate tests as much as possible to ensure better control of product quality.
All tickets should be tested manually by the QA Team. Selected tests will be automated at the API level (by Cucumber)
and the Ul level (i.e. by Selenium).

The document describes the following issues:

Manual tests;
Manual testing standards: The Ul style guide compatibility, translations and e.g. performance standards;

Ul testing: Includes a list of types of supported devices/browsers prioritized for manual testing, and the strategy
for testing the UI;

Responsibility;

Testing workflow: Describes the workflow for manual, automated testing and regression testing, and contains
guidance on how to report bugs;

Regression testing;

Test environments and updating test data;
Performance tests;

Automated tests;

Tools: What tools are used for testing OpenLMIS.

Manual Tests

Manual tests should:

Cover edge cases rather than happy paths:

Changing the column order in the requisition template should not affect existing requisitions (i.e. change
the order of the requisition columns);

Disabling/enabling requisition columns should not affect existing requisitions;

Blank mandatory fields;

Deactivation of different entities (programs, facilities etc.);
— Running out of periods for the requisition workflow;

Verify email messages are sent (until there are appropriate automated patterns for this):
— Emails to the storeroom manager after requisition status changes;

Cover checking reports (until we have an automated pattern):
— Printing requisitions;

— Stock-Based requisition reports;

1.5. Conventions 121

https://openlmis.atlassian.net/browse/OLMIS-1951
https://openlmis.atlassian.net/browse/OLMIS-1951
https://openlmis.atlassian.net/browse/OLMIS-2824
https://openlmis.atlassian.net/browse/OLMIS-2271
https://openlmis.atlassian.net/browse/OLMIS-4826

OpenLMIS Documentation, Release 3.0

* Not check whether a modal or a notification contains an exact text, but rather verify if it gives the user all
important information and context:

— “An error message implying the orderable was not found is displayed to the user”, instead of checking the
exact message (The following error message is displayed to the user: “Orderable with code XYZ was not
found”);

— “A question asking about changing requisition status to Submitted”, instead of checking the exact message
(The following error message is displayed to the user: “Are you sure you want to submit this R&R?”);

* Not check any Ul-specific details:

The order of the columns in a table;

Exact label names;

Exact placement of inputs;

Colors of elements if they are not significant (not notifications, buttons or validations).

Manual Testing Standards

Testing Standards:
* UI guidelines;
¢ Internationalization;
* Form entry and errors;
* Loading performance;
* Offline performance;
¢ Role based access control (RBAC);

» Exception scenarios.

Ul Testing

This section includes a list of types of supported devices/browsers prioritized for manual testing.

Past versions of OpenLMIS have officially supported Firefox. For OpenLMIS 3.0, we are prioritizing the support of
Chrome because of global trends (e.g. see Mozambique Stats), its developer tools and auto-updating nature.

For the testing of OpenLMIS, our browser version priorities are:
1. Chrome: The newest version;
2. Firefox: The newest version.

The next most widely-used browser version is IE 11 but we don’t recommend testing and bug fixes specifically for any
Internet Explorer compatibility in OpenLMIS.

The operating systems on which we should test are:
1. Windows 7 (by far the most-widely-used in Mozambique, Zambia, Benin and globally);
2. Windows 10.

Note: The QA team performs some tests with the use of Linux (Ubuntu) workstations. This is fine for API tests but
Linux is not a priority environment for Ul testing and for final testing of OpenLMIS. It’s important to test the Ul using
Chrome and Firefox on Windows 7 and Windows 10.

122 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

In other words, OpenLMIS developers and team members may be using Mac and Linux environments. It is fine to
report bugs happening on the supported browsers (Chrome and Firefox) on those platforms, but we won’t invest QA
time in extensive manual testing on Mac or Linux.

We asked different OpenLMIS implementations to share their Google analytics so that we can prioritize browser and
device support in the future.

Strategy for Testing Ul-specific Elements

¢ The filter buttons should be checked by E2E tests (no need to test alignment in a separate ticket);
* The sort buttons should be checked by E2E tests (no need to test alignment in a separate ticket);

* We should include checking some component, like the filter button, in the E2E test for a specific screen, rather
than create a specific manual test case for all occurrences;

» Checking whether a given screen is accessible for a user with or without proper rights should be checked by
E2E tests;

* The situation of Ul elements should not be tested;

* Resizing input boxes should be checked by an E2E test;

¢ Colors of rows in tables should not be tested;

* Redirecting to the login form after token expiration should be checked by E2E tests;
* The product grid/stockmanagement validations should be checked by E2E tests;

» Toggles should be checked by an E2E test;

* There is no need to have a test case for the background of the application;

* The order of the items on the navigation bar should be checked by an E2E test;
 Offline actions should be checked by E2E tests;

* The filter button’s color should be checked by an E2E test;

* The pagination component should not be checked separately because it is checked in other E2E tests (e.g. one
concerning requisition submission);

* The order of facilities within drop-downs has a unit test, so there is no need to check it manually;
* The auto-save should be checked by an E2E test;

* The table horizontal scrollbar should be tested manually;

* The sticky columns should be tested manually;

* The sticky headers should be tested manually;

* The breadcrumbs should be tested manually;

* The datepickers should be tested manually.

Supported Devices

OpenLMIS 3.0 only officially supports desktop browsers with a pointer (mouse, trackpad, etc.). The UI will not
necessarily support touch interfaces without a mouse pointer, such as iPad or other tablets. For now, we do not need
to conduct tests or file bugs for tablets, smart watches or other devices.

1.5. Conventions 123

OpenLMIS Documentation, Release 3.0

Screen Size

We suggest testing with the most popular screen sizes:

1. 1000 x 600 (this is a popular resolution for older desktop screen sizes; it is the 16:9 equivalent of the age-old
1024x768 size);

2. 1300 x 975 (this is a popular resolution for newer laptop or desktop screens).

The Ul should work on screens within that range of sizes. The screen size can be simulated in any browser by changing
the size of the browser window or with the use of the Chrome developer tools.

Responsibility

Developers (all teams):
* Writing unit tests for all code (we want test coverage to reach 80%-100%);

* Writing integration and component tests as assigned in tickets or as a part of the acceptance criteria.

Communication

QA meetings are scheduled to discuss testing-related topics, and the daily communication is held on the #QA slack
channel for OpenLMIS. The meeting notes are maintained on the QA Weekly meeting notes page.

Testing Workflow within a Sprint

The testing process in the OpenLMIS project is divided into three areas: Manual testing, automated testing and
regression testing. This section covers manual and regression testing performed with the use of Zephyr test cases and
test cycles.

Step 1: Test Cases

When a new feature ticket that does not concern the API is assigned to a sprint, the QA lead or the tester has to create
a test case and link it to the Jira ticket. This can happen in parallel to the development of the ticket. Test cases have
to be created for each JIRA ticket that is assigned to a sprint and has to be tested manually; one mustn’t create test
cases for API changes, as contract tests are used for their verification. It’s advised to create test cases before a sprint
begins, but this can also be done once a sprint has started. Note that sometimes a given feature might be interrelated
with the already-existing ones, which increases the risk of regression. In such situations, the developer working on the
ticket should recommend the test cases that should be run in parallel to the testing of a given feature. If this proves
impossible, they should inform the tester on the possible influence of the changes on other parts of the system.

Each new test case has to be reviewed (i.e. its content should be assessed; it should also be determined whether it
concerns a feature that is vital to the system — if so, it has to be assigned the “CoreRegression” label), and thus its
status should be “QA”. After the review, the test case’s status should be changed to “To Do”. Every 2 or 3 sprints,
the test cases concerning the features that had been impacted by the most-recent changes should be reviewed, so as to
ensure that they are still valid and that the test steps they include are not outdated.

In JIRA, click on “Create”. Select the project, in this case the project is “OpenLMIS General”. Then, select the “Issue
Type” as Test. The “Summary”, “Components”, and “Description” can be copied from the ticket to keep consistency,
or help in rewriting the test case in the next steps. Note that every valid test case has to have the “To Do” status
and “Minor” priority. The test case’s name should be in accordance with the following convention: “Screen: Tested
feature” (e.g. “Users: Searching for users”). After entering all data, click the “Create” button and a JIRA notification

will pop up with the test case’s number.

Create Test Case

124 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/114170699/QA+Weekly+meeting+notes

OpenLMIS Documentation, Release 3.0

Click the test case’s number, and it will bring you to the page enabling one to add the test steps and make required
associations. Labels help when querying for test cases to add to regression test cycles. For the example below,
a suggested label would be “Stock Management” or “Vaccines”. When the tested ticket concerns Ul changes and
contains a mock-up, the mock-up should be added as an attachment to the ticket with the test case.

The fix version/s is an association that organizes the test cases. This is used to report test case execution on the Test
Metrics Dashboard. If the fix version is not known at the time of creating the test, select “Unscheduled”. When the
JIRA ticket is assigned to a sprint, the test case must be updated with a correct fix version or it will not appear on the
Test Metrics Dashboard. The test steps provide a step by step guide to any tester on how to complete proper validation
of the JIRA ticket. The steps should explain in enough detail the actions to take, as well as the expected outcome of
those steps.

Entering steps in test case

Here is an example of some test steps:

Test steps example

Once the test case had been created, it needs to be associated with the JIRA ticket, as in the example below:
Linked JIRA Ticket

Linked Test Case

Test Case Best Practices
Creating a Test Case for an Edge Case or Unhappy Path Scenario

One needs to add several types of details in the test case’s description. These include pre-conditions, i.e. conditions that
need to be met before the test case can be executed (e.g. “At least one approved requisition needs to be created in the
system”; “Logging into the application”), the acceptance criteria from the ticket, a description of the scenario/workflow
(i.e. whether it is a happy-path one or an edge case, and what the workflow looks like; e.g. “User X authorizes a
requisition, User Y rejects it, User X authorizes the requisition again”, etc.), and of the test case itself (e.g. “Tests
whether it is possible to edit an approved requisition”; “Tests whether authorized users can approve requisitions”). In
order to facilitate the execution of test cases concerning requisitions, one has to include the link to the Requisition
States and Workflow diagram in the pre-conditions of such test cases.

If possible, one should not include too detailed data in the test case, e.g. user, facility or program names, as they may
vary, depending on the implementation. So one should write e.g.: “Choose any program (e.g. Family Planning)”;
“Knowing the credentials of any Stock Manager (e.g. srmanager2)”; “Knowing the credentials of any user authorized
to approve requisitions (e.g. administrator)”, instead of: “Choose the Family Planning program” or “Knowing the
password of srmanager2”. Information on user names, roles and rights is available here. Providing example test data
can be especially helpful for users who are not very familiar with the system. One also has to remember to include
the test data that are indispensable for the execution of the test case in the “Test Data” column for a given step. In
principle, all data that are necessary to execute the test case should be included in it (e.g. mock-ups): One should write
the test case in such a way that it’s not necessary to go to the tested ticket in order to test it.

Ideally, a test case should contain up to 40 steps at most. One can usually diminish their number by describing
test actions in a more general manner, e.g.: “Approve the requisition”, instead of writing: “Go to Requisitions >
Approve”, and describing the rest of the actions necessary for the achievement of the desired goal. Adding suitable
pre-conditions, such as: “Initiating, submitting and authorizing a requisition”, instead of adding steps describing all of
these actions in detail, also results in a shorter test case. Ideally, one should include all actions that are not verifying a
given feature/bug fix in the pre-conditions. If it is not possible to keep the test case within the above-mentioned limit,
one should consider creating more than one for a given ticket. Sometimes, splitting the testing of the ticket into more
than one test case will prove impossible, though.

If this won’t result in a too long test case, one should include both the test steps describing positive testing (happy
path scenario) and those concerning negative testing (edge case/unhappy path scenario) in one test case. A happy path

1.5. Conventions 125

https://openlmis.atlassian.net/wiki/spaces/OP/pages/113973375/Requisition+States+and+Workflow
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113973375/Requisition+States+and+Workflow
https://github.com/OpenLMIS/openlmis-referencedata/tree/master/src/main/resources/db/demo-data#roles-users-and-rights

OpenLMIS Documentation, Release 3.0

scenario or positive testing consists in using a given feature in the default, most usual way, e.g. when there is a form
with required and optional fields, one can first complete all of them or only the required ones and check what happens
when one tries to submit it. An edge case or negative testing will consist, in this example, in checking what happens
when trying to save the form when one or more of the required fields are blank. It is advisable to test the happy path
first and then, the edge cases, as the happy path is the most likely scenario and will be most-frequently followed by
users. Edge cases are the less usual and, frequently, not obvious scenarios, which are not likely to occur often but still
need to be tested in order to prevent failures in the application from happening. They are taken into account because of
software complexity (many possible variants of its utilization and thus situations that might occur), and because users,
like all people, vary and can make use of the application in different ways.

If it proves impossible to contain all workflows in one test case, the happy path and the edge case(s) have to be
described in separate ones, e.g. there should be one test case describing the testing of the happy path and one for each
edge case. One also has to write separate test cases if the happy path and the edge case(s) contain contradictory steps
or pre-conditions; e.g. the former concerns approving a newly-created requisition and the latter e.g. approving an
already-existing old one, not meeting the currently-tested, new requirement.

Finally, one needs to remember that also the expected results have to be specific but not too specific: For instance, it is
not recommended to provide exact text of messages and notifications. As an example of this, one shouldn’t write e.g.:
“The <<Requisition has been deleted!>> notification should appear”. Instead, one should write: “The notification that
the requisition had been deleted should appear”.

Updating a Test Case for a Bug

When one has to test a bug, one needs to browse through the existing test cases to check whether one that covers the
actions performed when testing the bug fix already exists. In virtually all cases, this will be the case. If it is so, one
needs to update the test case if necessary and link it to the ticket with the bug. Writing new test cases for bugs is not
recommended and has to be avoided. Some bugs are found during the execution of already-existing test cases. In such
a situation, the test case will already be linked to the ticket with the bug. One then needs to review it, and if there is a
need for it, update it. In most cases, this will not be necessary. Note that sometimes, the bug may in fact not be related
to the test case during the execution of which it had been discovered, or it might occur by the end of a given test case,
and the preceding steps might not be necessary in its reproduction. In both of these situations, one needs to find the
test case that is most likely to cover the feature that the bug concerns and update it accordingly. One also has to keep
in mind that test cases have to support and test the functionality, as well as provide a way to ensure that the bug had
been fixed.

If the bug wasn’t found during the execution of any test case, one still needs to check whether there is one containing
steps enabling one to reproduce the bug. In order to do so, one needs to go to “Tests > Search Tests” in the top menu
on Jira. Then, one is able to browse through all test cases in the project. Since there might be many of them, it is
advisable to use a filter. The first option is to enter word(s) that in one’s opinion might occur in the test case in the
“Contains text” input field and press “Enter”. The second one is clicking on “More” and choosing the criteria. Those
that are most likely to prove helpful are “Label” and “Component”. One can also use already-existing global filters,
which can be found by choosing the “Manage filters” option from the main Jira menu. Then, it’ll be possible to search
for and use the desired filter(s). They include e.g. “Administration tests” or “Stock Management test cases”, and might
prove especially useful when searching for test cases.

Exploratory Testing

When one is familiarizing oneself with the project or when one already knows the application but there are no tickets
currently to test, one can perform exploratory testing. This kind of testing is not related to any ticket. It consists
in testing the application without any previous plan, exploring it, in a way. It can be also considered as a form of
informal regression testing, as frequently, bugs resulting from regression are found during it. While performing this
kind of tests, it is advisable to be as creative as possible — to experiment with testing techniques and test steps, and not
to follow the happy path but the edge cases, or to try to find the latter.

126 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

Exploratory testing in the UI will focus on testing edge cases and causing errors related to the following categories:
Functional issues, UI to server failure, configuration issues, visual inconsistencies, and presentational issues.

Step 2: Test Cycles

Once the test case is written, it needs to be added to a test cycle. Click the “Add to Test Cycle(s)” button, and it will
bring you to this screen:

Adding Test Cycle

The version should be the version that is associated with the JIRA ticket. The test cycle will be either the current sprint
test cycle, or the current feature regression test cycle. If you are executing the test or know who will be executing it,
you can assign it here.

Typically, the QA lead or someone designated will create the test cycles for each sprint and they will only need to be
linked. If there are no test cycles to select, then these are the fields you must enter to create a new test cycle. The
following are two examples of test cycles created for a sprint. The test cycles must have the version, name, description,
and environment because they are used in queries for reporting and tracking test metrics.

e.g.

* Version - 3.2
x Name - Test Cycle for Sprint 31
x Description - Test Cycle for Sprint 31

» Environment - test.openlmis.org
x From (not required) - 2017-07-19
* To (not required) - 2017-08-02

Step 3: Execute Tests within a Test Cycle

Once test cases have been assigned to a test cycle, their execution is tracked in Zephyr. When a test is ready to be
executed, open the test case and navigate to the bottom of the page where the “Test Execution” links are shown. Click
the “E” button to begin execution.

Start Test Execution

The “Test Execution” page appears that details the test case and each test step. Select the “WIP” test execution status,
which means that the test case is in progress. Zephyr will assign you as the person executing the test and automatically
assign the start date and time. Assign the test execution to yourself, and you are ready to begin testing. Each step has
“Status”, “Comment”, “Attachments” and “Defects” fields.

While completing each step, if the expected result matches the actual one, change the status to “Pass”. If the step
execution does not match expectations, then the status is “Failed”. If for some reason the step cannot be executed,
such as the system is down, then the status would be “Blocked”. Once the test is completed, its status can be updated
to reflect whether it passed or failed, and the status of the test execution will be saved in the test case as shown on the
above screenshot. This status also appears in the Test Metrics Dashboard.

Test Execution Steps
Step 4: Enter Bugs

During testing, if a test step fails and there is a different result, or an error appears that is not expected, then a bug must
be entered. Click on the “Defects” column and “Create New Issue”.

The issue type is “Bug”, and the summary, description, priority, environment, and the original linked JIRA ticket
should all be added. The summary is a short description of the bug, while the description is a detailed step by step
explanation of how to recreate the bug, and what the expected result is per the test case step. It’s helpful to have the test
case open in a separate window so that you can copy those details if needed. The environment should be either test or
UAT, and you should provide as much detail about the environment that would help the developer when reproducing
the bug, such as in which browser you tested.

Create Defect Part 1

1.5. Conventions 127

OpenLMIS Documentation, Release 3.0

The new bug should be linked to the JIRA ticket that is linked to the test case.
Create Defect Part 2

When a bug is created, it will automatically get sent to the “Roadmap” status. It should stay in this status until it has
been triaged and reproduced — only then its status can be changed to “To Do” and when it happens, the bug becomes
visible in the product backlog. In summary, each of these steps completes the QA workflow process for a sprint.

Test Coverage: For each sprint’s test cycle, the QA lead must assign appropriate test cases so that they can be executed
during the sprint. These test cases will be selected based on the tickets assigned to the sprint after the Sprint Planning.
The QA lead must determine if test cases are missing for the tickets assigned to the sprint, and create those test cases
to ensure complete test coverage. New features require new test cases, while bugs or regression test cycles may rerun
existing ones.

Sprint Grooming and Planning Workflow

The tester is responsible for adding test cases to support all testing within the sprint. At the end of each sprint in which
regression testing was performed, the QA lead is expected to showcase the results. This should include: Showing the
test cycle, the execution metrics, # of added test cases and the final status of bugs found in the sprint (bug tracking).

Bug Tracking

It is important to track the bugs introduced during each sprint. This process helps to identify test scenarios that may
need more attention or business process clarification. Bug tracking also helps to identify delays in ticket completion.

* When a test case fails, a bug must be created and linked to the ticket. This bug has to be resolved before the
ticket can be marked as done;

» The same test case associated with the sprint’s test cycle should be run;

 If a bug is created for the test case, it has to be resolved before the test is executed again in the sprint cycle.

Bug Triage During the Sprint

The bug triage meeting is held twice every sprint, i.e. once a week. Before the meeting, bugs with the “Roadmap”
status are attempted to be reproduced and if they still occur, their status is changed to “To Do”. If not, they are moved
to “Dead”. During the meeting, the bugs reported are analyzed in terms of their significance to the project, their final
priority is set and the acceptance criteria are updated.

Manual Testing Workflow

When the developer finishes implementing the ticket, he/she should change its status from “In Progress” to “QA”. The
tester should then check whether all acceptance criteria are correct and up-to-date.

The main manual testing workflow consist of the following steps:

1. The tester starts testing when the ticket is moved to the “QA” column on the Jira sprint board, or when the
ticket’s status changes to “QA”. There is no automatic notification for this until the ticket is assigned, so the
tester has to check manually or the developer has to notify the tester.

2. The tester deploys changes to the test environment (uat.openlmis.org).

3. The tester creates a test case, or executes an existing one that is linked to the ticket. The tester should test all
acceptance criteria in the ticket. The test case has to be associated with the current sprint test cycle.

128 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

4. If bugs are found, the tester should change the ticket’s status to “In Progress™ and assign it to a proper developer.
* When a bug is created, it has to be linked to the ticket;
» The tester notifies the developer that the ticket was moved back to “In Progress”.

5. When everything works properly, the tester should change the status to “Done” and assign the ticket to the
developer who worked on it.

During the testing process, the tester should write comments in the ticket about the tested features and add the screen-
shots depicting the noticed issues.

Workflow Between the QA Teams

To improve the testing process, testers should help each other:

¢ If one of the team members doesn’t have anything to do in their own team, they should assist other teams in
testing;

* If any tester needs help with testing, they can report it on the QA Slack channel.

Ticket Workflow and Prioritization

In the OpenLMIS project, tickets may have the following statuses:

* “Roadmap”: Tickets intended for implementation but not ready for it; e.g. for which the acceptance criteria or
other details still need to be defined;

* “To Do”: Tickets ready for implementation;
* “In Progress™: Tickets currently being implemented or returned to the developer in order to fix bugs;
¢ “In Review”: Tickets in code review;
¢ “QA”: Tickets which should be tested;
e “Done”: Tickets which work correctly and are finished.
Ticket priorities are described in “Prioritizing Bugs”.

It is very important to start testing tickets with the “Blocker” and “Critical” priority first. When the tester is in the
middle of the testing process for a task with lower priority (i.e. “Major”, “Minor” or “Trivial”), and a task with higher
priority (i.e. “Blocker” or “Critical”) returns with changes to the “QA” column, the tester should complete testing the
task with lower priority as soon as possible and begin testing the task with higher priority.

Additionally, tickets on the Sprint dashboard in the “QA” column should be prioritized. Tickets with high priority (i.e.
“Blocker” or “Critical”) should be located at the top of the “QA” column. Every morning, the QA lead should set the
tasks in the “QA” column in correct order.

Regression Testing Workflow

Regression testing for OpenLMIS is organized by each of the features (Requisition, Stock Management, Fulfillment,
CCE, Administration, etc.) and the test cases are labeled with the feature’s name in order to facilitate the planning of
regression testing cycles. The tests are managed via the creation of a regression test cycle and assigning it to the sprint.
The test cases that are labeled with the feature should include workflow scenarios for the feature, as well as any edge
cases that have been identified as required for regression testing.

When creating the regression test cycle, the QA lead will search for test cases with the feature label and assign all of
them to the regression test cycle.

1.5. Conventions 129

https://openlmis.readthedocs.io/en/latest/contribute/contributionGuide.html#prioritizing-bugs
https://openlmis.atlassian.net/secure/RapidBoard.jspa?rapidView=46

OpenLMIS Documentation, Release 3.0

Add Tests to Test Cycle

Regular manual regression should be executed every second sprint (i.e. once a month). This kind of regression testing
is focused on specific services, it doesn’t entail testing the entire system. Testers decide what services the regular,
focused regression testing is to cover during the QA meetings, and their decision is based on the most-recent changes
in the system. For instance, if many changes had been recently introduced in requisitions, the regression testing will
consist in the execution of all test cases concerning the requisition service.

Big, full manual regression, consisting in manual tests of the whole system and the execution of all valid test cases,
is held one or two weeks before the Release Candidate process. The latter is further described in the “Versioning and
Releasing” document.

When bugs are found during regression testing, they are labeled with the “Regression” label. The regression-testing-
related bugs are usually considered either “Critical” or “Blocker” ones that must be resolved in the current or in the
next sprint. These bugs are also reviewed on the weekly bug triage meeting for completeness, and in order to ensure
communication of any concerns to stakeholders.

Workflow for Blocked Tickets

Sometimes during testing, one might come across blocked tickets. This is a situation in which, because of external
faults (not related to the content of the task), the tester cannot test a particular ticket. In such a case, one has to change
the ticket’s status to “In Progress™ and assign it to the developer who implemented the ticket. It is important to describe
the problem accurately in a comment.

Test Environments

Final tests of all features should be conducted on the UAT server. Some testing may also happen on the test server, in
case the UAT server is temporarily unavailable. The UAT server’s rebuilding is triggered manually. In order to rebuild
it, and thus perform the test on the latest changes, one has to log into Jenkins and schedule a build of the OpenLMIS-
3.x-deploy-to-uat job. One needs to do it when no other jobs are in the build queue, so to to ensure that the server
contains the latest changes. After the build is successful, one has to wait for several minutes and then, it is possible to
start testing. The test server always contains the latest changes but its use is not normally recommended, as it is very
frequently rebuilt (after the rebuilding, all data entered during testing are erased) because it is used for development
work. In order to be sure that the server contains the most-recent changes, one has to log into the application and look
at the upper-right corner, where information on when the software had last been updated is visible. If only the e.g.
“Software last updated on XX/XX/XXXX" text is visible, the software is up to date. As soon as it becomes outdated,
information that there are updates available appears next to the text concerning the date of the last update.

Updating Test Data

Before big regression testing, the tester has to update the test users and scenarios to support each of the features that
are part of the big regression testing. It is also important to note that several test cases entail changing the permissions
of demo-data users. Before executing such a test case, one needs to inform others on the #qa Slack channel that one
is going to change these permissions. Having executed the test case, one has to restore the user’s permissions to the
default ones manually or by scheduling a re-deploy to UAT. In both cases, one has to inform users on #qa that one is
changing the user’s permissions back to normal. In general, one should avoid changing the permissions of demo-data
users if it can be avoided. Instead, one can create a new user and assign suitable rights to them.

Translation Testing

While OpenL.MIS 3.0 supports a robust multi-lingual tool set, English is the only language officially provided with
the product itself. The translation tools will allow subsequent implementations to easily provide a translation to

130 Chapter 1. Contents:

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html#release-process
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html#release-process
https://uat.openlmis.org/
https://test.openlmis.org/
http://build.openlmis.org/

OpenLMIS Documentation, Release 3.0

Portuguese, French, Spanish, etc. Test activities should verify that message keys are being used everywhere on the Ul
and in error messages so that every string can be translated, with no hard coding. The v3 Ul is so similar to v2 that
testers could also apply the Portuguese translation strings from v2 to confirm that translations apply everywhere in v3.

Performance Testing

Apart from the usual manual testing, each ticket with the “NeedsPerformanceCheck” label has to undergo performance
testing. The instructions on how to perform this kind of tests are available in the “How do I record more test runs?”
and “Release testing for 3.3” sections on the “Performance Metrics” page, only one has to use the UAT server and the
credentials of users available at that instance. One has to pay attention especially to the CPU throttling (6x slowdown)
and Network (Slow 3G) settings, as they are vital in this kind of testing and render the results of different users
comparable.

Types of Automated Tests

The following test categories have been identified for use in OpenLMIS. As illustrated in this slide deck, we expect
the effort/number of tests in each category to reflect the test pyramid:

1. Unit,
Integration;
Component;
Contract,

End-to-End.

A

Unit Tests

e Who: Written by the code’s author during the implementation.

e What: The smallest unit (e.g. one piece of a model’s behavior, a function, etc.).

* When: At build time, should be fast and targeted, it should be possible to run only a part of the test suite.

e Where: Reside inside a service, next to the unit under test. Generally able to access package-private scope.

e Why: To test fundamental pieces/functionality, help guide and document design and refactors, protect against
regression.

Unit Test Examples

* Every single test should be independent and isolated. The unit test shouldn’t depend on another unit test.

DO NOT:

List<Item> list = new ArrayList<>();

@Test

public void shouldContainOneElementWhenFirstElementisAdded() {
Item item = new Item();
list.add (item) ;
assertEquals (1, list.size());

}

(continues on next page)

1.5. Conventions 131

https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
http://martinfowler.com/articles/microservice-testing/
http://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid

OpenLMIS Documentation, Release 3.0

(continued from previous page)

@Test

public void shouldContainTwoElementsWhenNextElementIsAdded () {
Item item = new Item();
list.add (item);
assertEquals (2, list.size());

One behavior should be tested in just one unit test.

DO NOT:

@Test

public void shouldNotBeAdultAndShouldNotBeAbleToRunForPresidentWhenAgeBelowl8 () {
int age = 17;
boolean isAdult = ageService.isAdult (age);
assertFalse (isAdult);

boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident (age)
assertFalse (isAbleToRunForPresident) ;

DO:

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
int age = 17;
boolean isAdult = ageService.isAdult (age);
assertFalse (isAdult) ;

@Test

public void shouldNotBeAbleToRunForPresidentWhenAgeBelowl8 () {
int age = 17;
boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident (age)
assertFalse (isAbleToRunForPresident) ;

Every unit test should contain at least one assertion.

DO NOT:

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
int age = 17;
boolean isAdult = ageService.isAdult (age);

DO:

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
int age = 17;
boolean isAdult = ageService.isAdult (age);
assertFalse (isAdult);

132

Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

* Don’t make unnecessary assertions. Don’t assert mocked behavior, avoid assertions that check the exact
same thing as another unit test.

DO NOT:

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
int age = 17;
assertEquals (17, age);

boolean isAdult = ageService.isAdult (age);
assertFalse (isAdult);

¢ The unit test has to be independent from external resources (i.e. don’t connect with databases or servers).

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelowl8 () {
String uri = String.format ("http://127.0.0.1:8080/age/", HOST, PORT);
HttpPost httpPost = new HttpPost (uri);
HttpResponse response = getHttpClient () .execute (httpPost);
assertEquals (HttpStatus.ORDINAL_200_OK, response.getStatusLine().getStatusCode());

* The unit test shouldn’t test Spring contexts. Integration tests are better for this purpose.

DO NOT:

@RunWith (SpringJdUnit4ClassRunner.class)
@ContextConfiguration (locations = {"/services-test-config.xml"})
public class MyServiceTest implements ApplicationContextAware

{

@Autowired
MyService service;

@Override

public void setApplicationContext (ApplicationContext context) throws
—BeansException

{

// something with the context here

e The test method’s name should clearly indicate what is being tested and what is the expected output and
condition. The “should - when” pattern should be used in the name.

DO:

@Test
public void shouldNotBeAdultWhenAgeBelowl8 () {

DO NOT:

1.5. Conventions 133

OpenLMIS Documentation, Release 3.0

@Test
public void firstTest () {

@Test
public void testIsNotAdult () {

¢ The unit test should be repeatable: Each run should yield the same result.

DO NOT:

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
int age = randomGenerator.nextInt (100);
boolean isAdult = ageService.isAdult (age);
assertFalse (isAdult);

}

* You should remember about initializing and cleaning each global state between test runs.

DO:

@Mock
private AgeService ageService;
private age;

@Before
public void init () {
age = 18;
when (ageService.isAdult (age)) .thenReturn (true);

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
boolean isAdult = ageService.isAdult (age);
assertTrue (isAdult);

¢ The test should execute fast. When we have hundreds of tests, we don’t want to wait several minutes until
all tests pass.

DO NOT:

@Test

public void shouldNotBeAdultWhenAgeBelowl8 () {
int age = 17;
sleep (1000);
boolean isAdult = ageService.isAdult (age);
sleep (1000);
assertFalse (isAdult);

134 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

Integration Tests

* Who: The code’s author during the implementation.

* What: Test basic operation of the service to persistent storage or a service to another service. When another
service is required, a test double should be used, not the actual service.

* When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from the
build in order not to slow the development down. Are run on the CI on every change.

* Where: Reside inside a service, separated from other types of tests/code.

* Why: Ensure that basic pathways to a service’s external run-time dependencies work, e.g. that a db schema
supports the ORM, or that a non-responsive service call is gracefully handled.

As far as testing controllers is concerned, tests are divided into unit and integration tests. Controller unit tests test the
logic in the controller, and integration tests test serialization/deserialization (and therefore do not need to test all code
paths). In both cases, the underlying services and repositories are mocked.

Component Tests

* Who: The code’s author during the implementation.

* What: Test more complex operations in the service. When another service is required, a test double should be
used, not the actual service.

e When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from the
build to not slow the development down. Will be run on the CI on every change.

* Where: Reside inside a service, separated from other types of tests/code.
* Why: Test whether interactions between components in the service work as expected.

These are not integration tests, which strictly test the integration between the service and an external dependency.
These test whether the interactions between the components in the service are correct. While integration tests ver-
ify only whether the basic pathways work, component tests verify whether, based on the input, the output matches
expectations.

They are not contract tests, which are more oriented towards business requirements, but are more technical in nature.
The contract tests will make certain assumptions about components, and these tests make sure those assumptions are
tested.

Contract Tests

* Who: The code’s author during the implementation, with the BA/QA’s input.
» What: Enforce contracts between and to services.

* When: Run on the CIL

* Where: Reside inside a separate repository: openlmis-contract-tests.

e Why: Test multiple services working together, testing contracts that the service both provides, as well as the
requirements a dependency has.

Ideally, a single scenario checks a single endpoint. In specific cases, like the requisition workflow, when it’s
impossible to check something without using other endpoints, it can be omitted.

1.5. Conventions 135

OpenLMIS Documentation, Release 3.0

The main difference between contract and integration tests: In contract tests, all services under test are real, meaning
that they will be processing requests and sending responses. Test doubles, mocking, stubbing should not be part of
contract tests.

Contract tests should follow the convention below:
¢ The scenario should be like <user_name> should be able to <action_description>;

* The feature’s name should consist of infinitive + noun in plural, e.g. Creating facility type approved products or
testing the FTAP creating screen/endpoint.

@FacilityTypeApprovedProductTests
Feature: Creating facility type approved products

Scenario: Administrator should be able to create FTAP
Given I have logged in as admin

When I try to create a FTAP:

| orderable.id | program.id o
— | facilityType.id | maxPeriodsOfStock | minPeriodsOfStock,
— | emergencyOrderPoint |

| 2400e410-b8dd-4954-b1c0-80d8a8e785fc | dcel7f2e-af3e-40ad-8e00-3496adefd4c3
— | acld268b-cel0-455f-bf87-9¢c667da8f060 | 3 | 1

—| 1
Then I should get response with created FTAP's id
And I logout

Refer to this doc for examples on how to write contract tests.
Contract tests should:

¢ Cover the contract between services:

Reasons from Stock Management provided for the requisition service: Stock reasons contract tests;

Converting requisitions to orders: Fulfillment contract tests;

The dependencies between the user resources in different services: Users contract tests; Contact details
contract tests;

The information provided to the UI;

» Cover checking the email templates (but appropriate patterns are required for email verification, there are no
tests present at the moment);

» Cover checking file upload:
— ISA values upload.

End-to-End Tests

Who: Tester/developer with input from the BA.
* What: Typical/core business scenarios.

* When: Run on the CIL.

* Where: Reside in separate repository.

* Why: Ensure that all the pieces work together to carry-out a business scenario. Help ensure that end-users can
achieve their goals.

136 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/README
https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/src/cucumber/resources/org/openlmis/contract_tests/stockmanagement_tests/StockReasonsTests.feature
https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/src/cucumber/resources/org/openlmis/contract_tests/fulfillment_tests/FulfillmentTests.feature
https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/src/cucumber/resources/org/openlmis/contract_tests/referencedata_tests/UserTests.feature
https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/src/cucumber/resources/org/openlmis/contract_tests/notification_tests/VerificationTests.feature
https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/src/cucumber/resources/org/openlmis/contract_tests/notification_tests/VerificationTests.feature
https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/src/cucumber/resources/org/openlmis/contract_tests/referencedata_tests/IdealStockAmountTests.feature#L7

OpenLMIS Documentation, Release 3.0

A single feature should cover only one (related) UI screen.
End-to-end tests should follow the convention below:
* The scenario should be like <user_name> should be able to <action_description>;

* The feature’s name should consist of infinitive + noun in plural, e.g. Adding reasons for testing the reason
adding screen/endpoint.

Feature: Adding reasons

Background:
Given I have logged with username "administrator" and password "password"
Given I have navigated to the reason list page

Scenario: Administrator should be able to add new reason
When I click on the "Add Reason" button
Then I should be brought to the reason creation page

When I select "Family Planning" from the "Program" list

And I select "Warehouse" from the "Facility Type" list

And I click on the "Add" button

Then I should see assignment for "Family Planning" program and "Warehouse"
—facility type

When I enter "Functional Test Reason" as "Name"

And I select "Transfer" from the "Category" list

And I select "Debit" as "Type"

And I enter "adjustment" as "Tags"

And I click on the "Add New Reason" button

Then I should see a successful notification saying "Reason saved successfully"

And I should see a reason with "Functional Test Reason" name, "Transfer"
—category and "Debit" type inside the table

E2E tests should:

» Cover workflow happy paths:
— Basic requisition workflow;
— Basic order workflow;
— Sending stock events.

* Not cover edge cases which require multiple steps from different microservices:
— Sending data from the requisition to the stockmanagement service.

» Cover checking functionalities dependent on user rights:
— The presence of elements on the navigation bar;
— The visibility of action buttons;

— Editable fields in forms.

Check Ul differences dependent on choosing specific options:
— How the requisition product grid screen behaves for emergency and regular requisitions;
— Differences between stock-based and non-stock-based requisitions;
— Differences between working with home and supervised facility.

* Not check any specific Ul details:

1.5. Conventions 137

OpenLMIS Documentation, Release 3.0

The order of columns in tables;

Exact label names;

Exact placement of inputs;

Colors of elements if they are not significant.

Testing Services Dependent on External APls

OpenLMIS uses WireMock to mock web services. An example integration test can be found here.

The stub mappings which are served by the WireMock’s HTTP server are available under src/test/resources/mappings
and src/test/resources/files. For instructions on how to create them, please refer to http://wiremock.org/record-
playback.html.

Testing Tools

¢ Cucumber and IntelliJ: For contract tests;

¢ Browsers: Chrome (the latest version) and Firefox (the latest version);

¢ REST clients: Postman, API Console and REST Client;

e JIRA: Issue-, task- and bug tracking;

» Zephyr: Test case and test cycle creation;

* Confluence: Project documentation, e.g. various guides and meeting notes;
¢ Reference Distribution;

e Docker 1.11+;

¢ Docker Compose 1.6+;

 Spring-boot-starter-test:

Spring Boot Test;
— JUnit;

Mockito;

Hamcrest;
¢ WireMock;
e REST Assured;

e raml-tester.

Error Handling Conventions

OpenLMIS would like to follow error handling best practices, this document covers the conventions we’d like to see
followed in the various OpenLMIS components.

138 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-example/blob/master/src/test/java/org/openlmis/example/WeatherServiceTest.java
http://wiremock.org
http://rest-assured.io
https://github.com/nidi3/raml-tester

OpenLMIS Documentation, Release 3.0

Java and Spring

The Java community has a long-standing debate about the proper use of Exceptions. This section attempts to be prag-
matic about the use of exceptions - especially understanding the Spring community’s exception handling techniques.

Exceptions in Java are broken down into two categories: those that are recovearable (checked) and those where client
code can in no-way recover from the Exception (runtime). OpenLMIS strongly discourages the use of checked excep-
tions, and the following section discusses what is encouraged and why checked exceptions should be avoided.

A pattern for normal error-handling

Normal errors for the purpose of this document are things like input validation or other business logic constraints.
There are a number of sources that make the claim that these types of errors are not exceptional (i.e. bad user input is
to be expected normally) and therefore Java Exception’s shouldn’t be used. While that’s generally very good advice,
we will be using runtime exceptions (not checked exceptions) as long as they follow the best practices laid out here.

The reasoning behind this approach is two-fold:

* Runtime exceptions are used when client code can’t recover from their use. Typically this has been used for the
class of programming errors that indicate that the software encountered a completely unexpected programming
error for which it should immediately terminate. We expand this definition to include user-input validation and
business logic constraints for which further user-action is required. In that case the code can’t recover - it has
to receive something else before it could ever proceed, and while we don’t want the program to terminate, we
do want the current execution to cease so that it may pop back to a Controller level component that will convert
these exceptions into the relevant (non-500) HTTP response.

* Using Runtime exceptions implies that we never write code that catches them. We will use Spring’s
@ControllerAdvice which will catch them for us, but our code should have less “clutter” as it’ll be largely
devoid of routine error-validation handling.

Effectively using this pattern requires the following rules:

1. The Exception type (class) that’s thrown will map one-to-one with an HTTP Status code that we want to return,
and this mapping will be true across the Service. e.g. a throw ValidationException will always result
in the HTTP Status code 400 being returned with the body containing a “nice message” (and not a stacktrace).

2. The exception thrown is a sub-type of java.lang.RuntimeException.

3. Client code to a method that returns RuntimeException’s should never try to handle the exception. i.e. it should
nottry {...} catch

4. The only place that these RuntimeExceptions are handled is by a class annotated @ControllerAdvice that
lives along-side all of the Controllers.

5. If the client code needs to report multiple errors (e.g. multiple issues in validating user input), then that collection
of errors needs to be grouped before the exception is thrown.

6. A Handler should never be taking one of our exception types, and returning a HTTP 500 level status. This
class is reserved specifically to indicate that a programming error has occurred.Reserving this directly allows
for easier searching of the logs for program-crashing type of errors.

7. Handler’s should log these exceptions at the DEBUG level. A lower-level such as TRACE could be used,
however others such as ERROR, INFO, FATAL, WARN, etc should not.

Example

The exception

1.5. Conventions 139

OpenLMIS Documentation, Release 3.0

public class ValidationException extends RuntimeException { ... }

A controller which uses the exception

@Controller
public class WorkflowController {

@QRequestMapping(...)
public WorkflowDraft doSomeWorkflow () {

if (someError)
throw new ValidationException(...);

return new WorkflowDraft (...);

The exception handler that’s called by Spring should the WorkflowController throw
ValidationException.

@ControllerAdvice
public class WorkflowExceptionHandler {
@ExceptionHandler (ValidationException.class)
@ResponseStatus (HttpStatus.BAD_REQUEST)
private Message.localizedMessage handleValidationException (ValidationException ve) {

logger.debug (ve) ;
return ve.getThelocalizedMessage();

}

Exceptions - what we don’t want

Lets look at a simple example that is indicative of the sort of code we’ve been writing using exceptions. This example
consists of a web-endpoint that returns a setting for a given key, which hands off the work to an application service
layer that uses the key provided to find the given setting.

A controller (HTTP end-point) that is asked to return some setting for a given “key”

@QRequestMapping (value = "/settings/{key}", method = RequestMethod.GET)
public ResponseEntity<?> getByKey (@PathVariable (value = "key") String key) {
try {

ConfigurationSetting setting = configurationSettingService.getByKey (key);
return new ResponseEntity<>(setting, HttpStatus.OK);

} catch (ConfigurationSettingException ex) {
return new ResponseEntity (HttpStatus.NOT_FOUND) ;

The service logic that finds the key and returns it (i.e. configurationSettingService above):

140 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

public ConfigurationSetting getByKey (String key) throws ConfigurationSettingException
.

ConfigurationSetting setting = configurationSettingRepository.findOne (key) ;

if (setting == null) {

throw new ConfigurationSettingException ("Configuration setting '" + key + "' not

—~found") ;

}

return setting;

}

In this example we see that the expected end-point behavior is to either return the setting asked for and an HTTP 200
(success), or to respond with HTTP 404 - the setting was not found.

This usage of an Exception here is not what we want for a few reasons:

* The Controller directly handles the exception - it has a try-catch block. It should only handle the successful path
which is when the exception isn’t thrown. We should have a Handler which is @ControllerAdvice.

* The exception ConfigurationSettingException doesn’t add anything - either semantically or func-
tionally. We know that this type of error isn’t that there’s some type of Configuration Setting problem,
but rather that something wasn’t found. This could more generically and more accurately be named a
NotFoundException. It conveys the semantics of the error and one single Handler method for the entire
Spring application could handle all NotFoundExceptions by returning a HTTP 404.

* It’s worth noting that this type of null return is handled well in Java 8’s Optional. We would still throw an
exception at the Controller so that the Handler could handle the error, however an author of middle-ware code
should be aware that they could use Optional instead of throwing an exception on a null immediately. This
would be most useful if many errors could occur - i.e. in processing a stream.

* This code is flagged by static analysis tools with the error that this exception should be “Either log or re-throw
this exception”. A lazy programmer might “correct” this by logging the exception, however this would result in
the log being permeated with noise from bad user input - which should be avoided.

How the API responds with validation error messages
What are Validation Error Messages?

In OpenLMIS APIs, validation errors can happen on PUT, POST, DELETE or even GET. When validation or per-
missions are not accepted by the API, invalid requests should respond with a helpful validation error message. This
response has an HTTP response body with a simple JSON object that wraps the message. Different clients may use
this message as they wish, and may display it to end-users.

The Goal: We want the APIs to respond with validation error messages in a standard way. This will allow the APIs
and the UI components to all be coded and tested against one standard.

When does this pattern apply?

When does this “validation error message” pattern apply? We want to apply this pattern for all of the error situations
where we return a HTTP response body with an error message. For more details about which HTTP status codes this
aligns with, see the ‘HTTP Status Codes’ section below.

1.5. Conventions 141

http://sonar.openlmis.org/issues/search#issues=AVc18ErL0QRqkcp89olY

OpenLMIS Documentation, Release 3.0

What do we return on Success?

In general, success responses should not include a validation message of the type specified here. This will eliminate
the practice which was done in OpenLMIS v2, EG:

PUT /requisitions/75/save.json
Response: HTTP 200 OK
Body: {"success":"R&R saved successfully!"}

On success of a PUT or POST, the API should usually return the updated resource with a HTTP 200 OK or HTTP
201 Created response code. On DELETE, if there is nothing appropriate to return, then an empty response body is
appropriate with a HTTP 204 No Content response code.

HTTP Status Codes

Success is generally a 2xx HTTP status code and we don’t return validation error messages on success. Generally,
validation errors are 4xx HTTP status codes (client errors). Also, we don’t return these validation error messages for
5xx HTTP status codes (server or network errors). We do not address 5xx errors because OpenLMIS software does
not always have control over what the stack returns for 5xx responses (those could come from NGINX or even a load
balancer).

Examples below show appropriate use of HTTP 403 and 422 status codes with validation error messages. The
OpenLLMIS Service Style Guide includes further guidance on HTTP Status Codes that comes from Best Practices
for Designing a Pragmatic RESTful API.

Example: Permissions/RBAC

The API does a lot of permission checks in case a user tries to make a request without the needed permissions. For
example, a user may try to initiate a requisition at a facility where they don’t have permissions. That should generate
a HTTP 403 Forbidden response with a JSON body like this:

{

"message" : "Action prohibited because user does not have permission at the facility
(_}ll,
"messageKey" : "requisition.error.prohibited.noFacilityPermission"

When creating these error validation messages, we encourage developers to avoid repeating code. It may be appropri-
ate to write a helper class that generates these JSON validation error responses with a simple constructor.

We also don’t want developers to spend lots of time authoring wordy messages. It’s best to keep the messages short,
clear and simple.

Translation/i18n

Message keys are used for translations. Keys should follow our Style Guide i18n Naming Conventions.

The “messageKey” is the key into a property translation file such as a .properties file maintained using Transifex or a
similar tool.

The “messageKey” will be used with translation files in order to conduct translation, which we allow and support on
the server-side and/or the client-side. Any OpenLMIS instance may configure translation to happen in its services or
its clients.

142 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status
https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md#i18n-naming-conventions
http://docs.transifex.com/formats/java-properties/

OpenLMIS Documentation, Release 3.0

A service will use the “messageKey” to translate responses into a different language server-side in order to respond
in the language of choice for that OpenLMIS implementation instance. And/or a client/consumer may use the “mes-
sageKey” to translate responses into a language of choice.

The source code where a validation error is handled should have the “messageKey” only. The source code should not
have hard-coded message strings in English or any language.

Messages with Placeholders for Translation

Placeholders allow messages to be dynamic. For example, “Action prohibited because user {0} does not have permis-
sion {1} at facility {2}”.

The Transifex tool appears to support different types of placeholders, such as {0} or %s and %d. In OpenLMIS v2,
the MessageService (called the Notification Service in v3) uses placeholders to make email messages translate-able.
For an example, see the StatusChangeEventService.

Multiple errors in response

When validation is not accepted, we want to use the top level error message with section below with multiple field
errors. Every field error in response should contain message key and message for specific field rejected by validator.
Field errors can be nested. Instead of arrays, map should be returned with rejected field name as a key. When field is
an element of array, resource identifier should be used as the key, such as UUID or code.

{

"message": "Validation error occurred",
"messageKey": "requisition.error.validation.fail",
"fieldErrors": {
"comment": {
"message": "Comment is longer than 255 characters and can not be saved",
"messageKey": "requisition.comment.error.invalidLength"
}I
"requisitionLineItems": {

"0cd4b5efe-259c-44c9-8969-£157£778ee0f": {
"stockOnHand": {
"message": "Stock on hand can not be negative",
"messageKey": "requisition.error.validation.stockOnHand.cannotBeNegative"

Future: Arrays of Messages

In the future, we may extend these guidelines to support an array of multiple messages.

Future: Identifying Fields Where Validation Was Not Accepted

In the future, it may also be helpful to extend this to allow the error messages to be associated with a specific piece of
data. For example, if a Requisition Validation finds that line item quantities do not add up correctly, it could provide
an error message tied to a specific product (line item) and field. Often this kind of validation may be done by the client

1.5. Conventions 143

https://github.com/OpenLMIS/open-lmis/blob/master/modules/core/src/main/java/org/openlmis/core/service/StatusChangeEventService.java#L62

OpenLMIS Documentation, Release 3.0

(such as in the AngularJS UI app), and the client can immediately let the end-user know about a specific field with a
validation error.

Future: Including Stack-Traces in Development Mode

In the future, it may be useful to be able to launch the entire application in a debug mode.In this mode errors returned
via the API might include a stacktrace or other context normally reserved for the server log. This would be a non-
default mode that developers could use to more easily develop the application.

Proposed RAML

schemas:
- localizedErrorResponse: |
{
"type": "object",
"Sschema": "http://json-schema.org/draft-04/schema",
"title": "LocalizedErrorResponse",
"description": "Localized Error response",
"properties": {
"message": { "type": "string", "title": "error message" },
"messageKey": { "type": "string", "title": "key for translations" },
"fieldErrors": {
"type": "object",
"title": "FieldErrors",
"description": "Field errors"
}
}I
"required": ["messageKey", "message"]

/requisitions:
/{id}:
put:
description: Save a requisition with its line items
responses:
403:
422
body:
application/json:
schema: errorResponse

Service Health

In OpenLLMIS’ Service Architecture it’s important that a Service be able to tell our Service Registry (Consul) when
it’s ready to accept new work and when it’s not. If the service doesn’t inform our Service Registry accurately, then
new requests for work might be routed to that service from the reverse proxy (Nginx) which won’t be fulfilled.

Spring Boot Actuator

In our Spring Boot based services there is a very handy project named Spring Boot Actuator that once enabled turns
on a number of useful production features. One of these is the /actuator/health endpoint.

To make use of this in OpenLLMIS v3 architecture we will:

144 Chapter 1. Contents:

https://www.consul.io/
https://nginx.org/
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html

OpenLMIS Documentation, Release 3.0

1. Add Spring Boot Actuator to our Service.
2. Enable the /actuator/health endpoint.

3. Register this endpoint with Consul as a health check.

Adding Spring Boot Actuator to our Service

As simple as adding it as a dependency:

build.gradle:

dependencies {

compile "org.springframework.boot:spring-boot-starter—-actuator”

Enabling the /actuator/health endpoint

May be done through our default configuration:

application.properties:

management .endpoints.enabled-by-default=false
management .endpoint.health.enabled=true

Note that we first disable all of the endpoints that Spring Boot Actuator adds to be conservative, we don’t need them
(yet). Next we ensure that the /actuator/health endpoint is enabled.

Registering /actuator/health with Consul (Service Registry)

First we must allow non-authenticated access to this resource:

ResourceServerSercurityConfiguration.java:

.antMatchers (
"/referencedata",
"/actuator/health",
"/referencedata/docs/*x"

) .permitAll ()

Next we need to tell Consul that this endpoint should be used for a health check:

config.json:
"service": {
"Name": "referencedata",
"Port": 8080,
"Tags": ["openlmis-service"],
"check": {
"interval": "10s",
"http": "http://HOST:PORT/actuator/health"

by

1.5. Conventions 145

OpenLMIS Documentation, Release 3.0

This Consul check directive will be registered with Consul, letting Consul know that every 10 seconds it should try
this /actuator/health endpoint and use the HTTP status to determine the Service’s availability.

And finally we’ll need to ensure that the registration script replaces HOST and PORT with the correct values when it
sends this to Consul:

consul/registration.js:

function registerService() {
service.ID = generateServiceld(service.Name) ;

if (service.check) {
var checkHttp = service.check.http;
checkHttp = checkHttp.replace ("HOST", service.Address);
checkHttp = checkHttp.replace ("PORT", service.Port);
service.check.http = checkHttp;

This commit has the change.

At this point you might be wondering why we left this endpoint unsecured and not mapped to some name which is
service specific. After all, every running service will use /actuator/health. What we did not do however is
make this endpoint routable by adding it to our RAML or registering it as a path for Consul. This means that our
reverse proxy will never try to take a HTTP request to /actuator/health and route it to any particular service.
Only Consul will know of this endpoint and try to access it through the network at the host and port which the Service
registered itself with. No client to our reverse proxy will be able to directly access a Service’s health endpoint.

Health and HTTP Status

The Consul check directive is looking for the following HTTP statuses:
» 2xx: Everything is okay, send more requests
* 429: Warning, too many requests. There is a problem, but still send more requests.
¢ Anything else: failed, not available for servicing requests

The /actuator/health endpoint naturally fulfills HTTP 200 when the Service is ready and also has the basics
of how to report when a service is down (e.g. if the database connection is down the endpoint will return a 5xx level
error). This endpoint can do more however. Spring Boot Actuator Health Information has more details about how
custom code can be written that modifies the health status returned. This could be especially useful if a Service has
a dependancy on another system (e.g. integration with ODK or DHIS2), another Service (e.g. Requisition needs
Reference Data) or another piece of infrastructure (e.g. sending emails, SMS, etc).

1.5.5 Ul Conventions

See the UI Styleguide for conventions about how components look and function. See the Reference Ul section under
Components to learn about the UI architecture, how to build and extend/customize.

Ul Label Conventions

The following document outlines how content, labels and messages should be displayed in the OpenLMIS-UI. This
guide presents generalizations for how labels should be written and complex workflows should be organized.

146 Chapter 1. Contents:

https://www.consul.io/docs/agent/checks.html
https://github.com/OpenLMIS/openlmis-referencedata/commit/3bcd75f24dbe60702083771d2c947c713725e15e#diff-426e2baf3a14662065832f6c45702da6
https://www.consul.io/docs/agent/checks.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-health
http://build.openlmis.org/job/OpenLMIS-ui-components-pipeline/job/master/lastSuccessfulBuild/artifact/build/styleguide/index.html

OpenLMIS Documentation, Release 3.0

Content Conventions

The following are general stylistic rules for the OpenLMIS-UI, which implementers and developers should keep in
mind while crafting content.

Titles

Titles include page titles, report titles, headings within a page (H2, H3, etc), and the subject line of email notifications.
Links in the main navigation menu are generally page titles. Most other strings that appear on-screen are Labels,
Buttons or others described further below.

Titles should be written so they describe a specific object and state. If there is a state that is being applied to the object
in a title, the state is first in the present tense. The first letter of each word in a title should be capitalized, except for
the articles of the sentence. Titles do not contain punctuation.

See APA article about title case for more guidance.

Examples Do: “Initiate Requisition” Do Not: “REQUISITION - INITIATE”

Labels

Labels are generally used in form elements to describe the content a user should input. Labels have the first letter of
the first word capitalized, and should not have any punctuation such as a colon.

Labels also include table column headers and dividers for sections or categories.

Note: Colons should be added using CSS pseudo-selector, if an implementation requires labels to be formatted with a
colon. As a community, we feel that less allows for easier customization.

Example Do: “First name” Do Not: “First Name:”

Buttons

Buttons should be used to refer to a user taking an action on an object, meaning there should always be a specific verb
followed by a subject. Buttons have the first letter of each word capitalized and don’t have any punctuation.

Example Do: “Search Facilities” Do Not: “SEARCH”

Messages

Messages represent a response from the system to a user. These strings should be written as a command, where the
first word is the action that has happened. The first letter of a message is capitalized, but there is no punctuation.

Example Do: “Failed to save user profile” Do Not: “Saving user profile failed.”

Confirmations

Confirmations are messages shown to the user to confirm that they actually want to take an action. These messages
should address the user directly and be phrased as a single sentence.

Example Do: “Are you sure you want to submit this requisition?”” Do Not: “Submitting requisition, are you sure?
Please confirm.”

1.5. Conventions 147

http://blog.apastyle.org/apastyle/2012/03/title-case-and-sentence-case-capitalization-in-apa-style.html

OpenLMIS Documentation, Release 3.0

Instructions

Instructions might be placed at the top of a form or after a confirmation to clarify the action a user is taking. These
should be written as full paragraphs.

Example Do: “Authorize this requisition to send the requisition to the approval workflow.” Do Not: “Authorize requi-
sition — send to approval workflow”

Information Architecture

In the context of the OpenLMIS-U]I, information architecture refers to how a person finds and edits data by navigating
between screens and states. This document provides guidelines used in the OpenLMIS-UI, and while it is preferential
to stick to these guidelines, there will be exceptions. Please document why exceptions have been made.

The OpenLMIS-UI uses a shallow information architecture, meaning each screen should have a single focused goal
for a person managing logistical information. For example, there is an “Approve Requisitions” screen, where the
only requisitions that are displayed are requisitions that need to be approved that the current user has permissions to
approve. By keeping the information architecture of the OpenLMIS-UI shallow, we hope to provide a user experience
that is efficient.

To support our shallow information architecture we:
* Avoid “nested” navigation, meaning we prefer a single long list of pages instead of “folders within folders.”

» Use strong defaults, because we don’t want to force a user to make lots of choices before getting to work. Ideally
a user can navigate to a page and start doing work.

See the OpenLMIS Generic Workflows in Balsamiq for an annotated set of mockups that show and explain these
conventions. In addition, see the Mockup Guidelines in the OpenLMIS wiki.

Generic Page Types

The following page types are guidelines for how to discuss the screens and pages that make up workflows that are
implemented in the OpenLMIS-UI. Every page type should meet the following rules:

» Each page has a unique URL address

» Each page has a single purpose

List View

A list view is a screen with a paginated list of items from the OpenLMIS Services. A list could be a list of users,
products, or orders that need to be fulfilled at a facility.

All list views should:
» Attempt to show the current state of an OpenLLMIS Service
* Avoid editing list items directly in the list (editing should be done in a detail or document view)

See the List View in Balsamiq for annotated examples.

Detail View

A detail view most often shows editable details of an item from the proceeding list view. Our recommendation is to
show item details inside a model, so a user doesn’t lose context of the list.

148 Chapter 1. Contents:

https://openlmis.mybalsamiq.com/projects/olmis-3609genericworkflows/grid
https://openlmis.atlassian.net/wiki/spaces/OP/pages/140902547/Mockup+Guidelines
https://openlmis.mybalsamiq.com/projects/olmis-3609genericworkflows/List%20view

OpenLMIS Documentation, Release 3.0

Detail views should focus on a single set of data or a single action to an object. For example, on the CCE Inventory
page, a user is presented with a list view of CCE Inventory items, and from this view there are two separate detail views.
The first is a generic view for the history of that CCE Inventory item, while the second is a detail view specifically
focused on updating the functional status for the inventory item.

An example mockup for Detail Views is included in the List View in Balsamig.

Document View

Document views represent a complex item, like a requisition or proof of delivery, and focuses on making these items
editable. A document view is generally navigated to from a list view.

Document views should:
* Function when the browser is offline
 Cache all information that is needed on the page so the editing experience is fast and responsive for a user

* Not implement pagination for tables of information, but rather show a long continuous table so the user feels it
is a single large document

See the Document View in Balsamiq for annotated examples.

Navigation

In the OpenLMIS-UI, a user generally navigates from screen to screen where:
 Each screen has a unique URL
» The screen is one of our view type (above)

The largest piece of navigation in the OpenLMIS-UI is the header navigation that displays links to specific views and
workflows. There are other forms of navigation, like the Program and Facility Navigation (which is detailed below).

Many screens will implement filter and sort controls that will change how information is shown in a view, but doesn’t
actually represent a navigation change. Currently, in the OpenLMIS-UI it is most common that a list view will
implement both a sort and filter control, while a document view will only show a filter control. Filters and sorts are
included in the List View in Balsamiq.

Filter Controls

A filter modifies information shown on a page. Filters are always optional, and should never be a primary feature in a
screen. If a user is going to accomplish a task, the filter helps the user accomplish the task quicker — but should never
be the only way to accomplish the task.

If there is multiple filter criteria, the criterion should be combined using conjunctional logic (ie “AND” not “OR”).

If a filter is required, or a primary focus of the entire screen, it should be redesigned to be incorporated into persistent
page navigation.

Sort

Sorts refer to how a list of items are ordered within a table or list. Every list should have a sort order presented to the
user, so the user can understand how the document is organized.

When the sort order is changed, no items in the list should be removed — unlike a filter control that is only concerned
with removing items from a list.

1.5. Conventions 149

https://openlmis.mybalsamiq.com/projects/olmis-3609genericworkflows/List%20view
https://openlmis.mybalsamiq.com/projects/olmis-3609genericworkflows/Document%20view
https://openlmis.mybalsamiq.com/projects/olmis-3609genericworkflows/List%20view

OpenLMIS Documentation, Release 3.0

Program and Facility Selection

Many workflows in the OpenLMIS-UI require a user to select both a facility and program they are working in before
any data is displayed. This is a form of navigation, but it can be much more complicated than a list of links.

In the OpenLMIS-UI we have created an Angular]JS component to keep facility and program selection consistent.
Program and Facility Selection works like this:
* A user is presented with the option of selecting the home facility or selecting one of their supervised facilities

* Home facility is the default selection, unless the user doesn’t have a home facility, and then the option should
be hidden

If the user doesn’t have supervised facilities, that option is hidden
« If the home facility is selected, the user must then select a program that is supported by that facility

* If the supervised facility option is selected, the user must first select a program, then select a facility that supports
that program.

Some list views do not require a user to select both a program and facility, but instead provide an optional filter to help
the user drill in on a sub-set of the list. In those cases, the selection rules above don’t apply. Ideally, users will only be
shown lists of programs and facilities they have access to.

Ul Coding Conventions

This document describes the desired formatting to be used within the OpenLMIS-UI repositories. Many of the con-
ventions are adapted from John Papa’s Angular V1 styleguide, SMACSS by Jonathan Snook, and Jens Meiert’s main-
tainability guide.

General

The following conventions should be applied to all sections of UI development:
 All indentation should be 4 spaces
» Legacy code should be refactored to meet coding conventions

* No third party libraries should be included in a OpenLMIS-UI repository

File Structure

All file types should be organized together within the src directory according to functionality, not file type — the
goal is to keep related files together.

Use the following conventions:
* File names are lowercase and dash-separated
* Files in a directory should be as flat as possible (avoid sub-directories)

* If there are more than 12 files in a directory, try to divide files into subdirectories based on functional area

150 Chapter 1. Contents:

https://github.com/johnpapa/angular-styleguide/blob/master/a1/README
https://smacss.com/
https://meiert.com/en/blog/maintainability-guide/
https://meiert.com/en/blog/maintainability-guide/

OpenLMIS Documentation, Release 3.0

Naming Convention

In general we follow the John-Papa naming conventions. Later sections go into specifics about how to name a specific
file type, while this section focusses on general naming and file structure.

Generally, all file names should use the following format specific-name.file-type.ext where:
* specific—name is a dash-separated name for specific file-type
e file-type is the type of object that is being added (ie ‘controller’, ‘service’, or ‘layout’)
* ext is the extension of the file (ie ‘.js’, ‘.scss’)

Folder structure should aim to follow the LIFT principal as closely as possible, with a couple extra notes:
* There should only be one *.module.js file per directory hierarchy

* Only consider creating a sub-directory if file names are long and repetitive, such that a sub-directory would
improve meaning Each file type section below has specifics on their naming conventions

Javascript Guidelines

Almost everything in the OpenLMIS-UI is Javascript. These are general guidelines for how to write and test your
code.

General conventions:
¢ All code should be within an immediately invoked scope
e ONLY ONE OBJECT PER FILE
* Variable and function names should be written in camelCase

¢ All Angular object names should be written in CamelCase

Documentation

To document the OpenLMIS-UI, we are using ngDocs built with grunt-ngdocs. See individual object descriptions for
specifics and examples of how to document that object type.

General rules

* any object’s exposed methods or variables must be documented with ngDoc
* @ngdoc annotation specifies the type of thing being documented

* as ‘“Type’ in documentation we should use:

¢ Promise

* Number

e String

* Boolean

¢ Object

e Event

* Array

1.5. Conventions 151

https://github.com/johnpapa/angular-styleguide/tree/master/a1#naming
https://github.com/johnpapa/angular-styleguide/tree/master/a1#application-structure-lift-principle
https://github.com/johnpapa/angular-styleguide/tree/master/a1#iife
https://github.com/angular/angular.js/wiki/Writing-AngularJS-Documentation
https://www.npmjs.com/package/grunt-ngdocs

OpenLMIS Documentation, Release 3.0

* Scope
* in some cases is allowed to use other types i.e. class names like Requisition

* all description blocks should be sentence based, all of sentences should start with uppercase letter and end with

* before and after description block (if there is more content) there should be an empty line

* all docs should be right above the declaration of method/property/component

* when writing param/return section please keep all parts(type, parameter name, description) start at the same
column as it is shown in method/property examples below

* please keep the order of all parameters as it is in examples below

General Object Documentation

Regardless of the actual component’s type, it should have ‘@ngdoc service’ annotation at the start, unless the specific
object documentation says otherwise. There are three annotations that must be present:

* ngdoc definition
¢ component name

* and description

* @ngdoc service
* @name module-name.componentName

* @description
* Component description.
*/

Methods

Methods for all components should have parameters like in the following example:

[* %
* @ngdoc method
* @methodOf module-name.componentName
+ @name methodName

* @description
* Method description.

* @param {Type} paramsNamel paraml description
* @param {Type} paramsName2 (optional) param2 description
* @return {Type} returned object description

Parameters should only be present when method takes any. The same rule applies to return annotation. If the parameter
is not required by method, it should have “(optional)” prefix in the description.

152 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

Properties

Properties should be documented in components when they are exposed, i.e. controllers properties declared in ‘vm’.
Properties should have parameters like in the following example:

/ %%
@ngdoc property

@propertyOf module—name.componentName
@name propertyName

@type {Type}

L . S S

*

*

@description
x Property description.
x/

Constants

Constants are Javascript variables that won’t change but need to be reused between multiple objects within an Angular
module. Using constants is important because it becomes possible to track an objects dependencies, rather than use
variables set on the global scope.

It’s also useful to wrap 3rd party objects and libraries (like jQuery or bootbox) as an Angular constant. This is useful
because the dependency is declared on the object. Another useful feature is that if the library or object isn’t included,
Angular will throw a single verbose error message.

Add rule about when its ok to add a group of constants — if a grouping of values, use a plural name
Conventions:
 All constant variable names should be upper case and use underscores instead of spaces (ie VARIABLE_NAME)

* If a constant is only relevant to a single Angular object, set it as a variable inside the scope, not as an Angular
constant

o If the constant value needs to change depending on build variables, format the value like @ @VARI-
ABLE_VALUE, and which should be replaced by the grunt build process if there is a matching value

* Wrap 3rd party services as constants, if are not already registered with Angular

Replaced Values

@ @ should set own default values

Interceptor

This section is about events and messages, and how to modify them.

HTTP Interceptors are technically factories that have been configured to ‘intercept’ certain types of requests in Angular
and modify their behavior. This is recommended because other Angular objects can use consistent Angular objects,
reducing the need to write code that is specialized for our own framework.

Keep all objects in a single file - so its easier to understand the actions that are being taken

The Angular guide to writing HTTP Interceptors is here

1.5. Conventions 153

https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#vendor-globals
https://docs.angularjs.org/api/ng/service/%24http#interceptors

OpenLMIS Documentation, Release 3.0

General Conventions

* Write interceptors so they only change a request on certain conditions, so other unit tests don’t have to be
modified for the interceptors conditions

e Don’t include HTTP Interceptors in openlmis-core, as the interceptor might be injected into all other unit tests
— which could break everything

Unit Testing Conventions

The goal when unit testing an interceptor is to not only test input and output transformation functions, but to also make
sure the interceptor is called at an appropriate time.

Javascript Class

Put all direct business logic in a pure javascript class.

Pure javascript classes should only be used to ease the manipulation of data, but unlike factories, these object shouldn’t
create HTTP connections, and only focus on a single object.

Javascript classes should be injected and used within factories and some services services that have complex logic.
Modules should be able to extend javascript classes by prototypical inheritance.

Helps with code reusability

Requisition/Lineltem is good example

Naming Conventions

SampleName

Classes should be uppercase CamelCased, which represents that they are a class and need to be instantiated like an
object (ie new SampleName ()).

Routes

Routing logic is defined by UI-Router, where a URL path is typically paired with an HTML View and Controller.

Use a factory where possible to keep resolve statements small and testable

General Conventions

* The Ul-Router resolve properties are used to ease loading on router

* Routes should define their own views, if their layout is more complicated than a single section

Service

John Papa refers to services as Singletons, which means they should only be used for application information that has
a single instance. Examples of this would include the current user, the application’s connection state, or the current
library of localization messages.

154 Chapter 1. Contents:

https://ui-router.github.io/ng1/
https://github.com/angular-ui/ui-router/wiki#resolve
https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#style-y271
https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#services

OpenLMIS Documentation, Release 3.0

Conventions

* Services should always return an object

* Services shouldn’t have their state changed through properties, only method calls

Naming Convention

nameOfServiceService

Always lowercase camelCase the name of the object. Append ‘Service’ to the end of the service name so developers
will know the object is a service, and changes will be persisted to other controllers.

Unit Testing Conventions

» Keep $httpBackend mock statements close to the specific places they are used (unless the statement is reusable)
¢ Use Jasmine’s spyOn method to mock the methods of other objects that are used

 In some cases mocking an entire AngularJS Service, or a constant, will be required. This is possible by using
Angular]S’s $provide object within a beforeEach block. This would look like

beforeEach (module ($provide) {
// mock out a tape recorder service, which is used else where
this.tape = jasmine.createSpyObj('tape', ['play', 'pause', 'stop', 'rewind'l]);

// overwrite an existing service

var tape = this.tape;

Sprovide.service ('TapeRecorderService', function () {
return tape;

1)

Class

Class is a our custom pattern that was designed to make our codebase easier to migrate to ES6 once we add support
for it as it mimics how the ES6 classes looks like.

When to use:

¢ factories,

* services,

* domain classes that define some logic.
‘When not to use:

* interceptors,

* domain objects that does not have any logic.

1.5. Conventions 155

https://docs.angularjs.org/api/auto/service/%24provide

OpenLMIS Documentation, Release 3.0

How to define

(function () {
'use strict';

J %k
* @ngdoc service
* @name module—name.ClassName

*
* (@description
* Example class.
*/
angular
.module ('module—-name')
.factory('ClassName', ClassName) ;
function ClassName () {

ClassName.prototype.exampleMethod = exampleMethod;

return ClassName;

* @ngdoc method
* @methodOf module-name.ClassName
* @name ClassName

* @description
* Creates a new instance of the ClassName class.

* @param {Object} parameter the constructor parameter
* @return {Object} the object of the ClassName class
*/
function ClassName (parameter) {
this.parameter = parameter;

* @ngdoc method
* @methodOf module-name.ClassName
* @name exampleMethod

* @description
* Creates a new instance of the ClassName class.

* @param {Object} parameter the method parameter
* @return {Object} the result of the method
*/
function exampleMethod () {
//do something

156 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

Extending classes

In order to extend a class we can use the classExtender factory that deals will basic prototype extension.

(function () {
'use strict';

J ok k
* @ngdoc service
* (@name module—name.ClassName
*
* @description
* Example extending class class.

*/
angular
.module ('shipment")
.factory ('ExtendingClass', ExtendingClass);
ExtendingClass.$inject = ['ExtendedClass', 'classExtender'];

function ExtendingClass (ExtendedClass, classExtender) {
classExtender.extend (ExtendingClass, ExtendedClass);
return ExtendingClass;
function ExtendingClass () {

//add the following line to call the constructor of the super class
this.super.apply(this, arguments);

Singletons

In order to create a singleton we should still elevate AngularJS dependency injection capabilities. The className
object will be shared across the whole application and can be injected using AngularJS dependency injection.

(function () {
'use strict';

J ok k
* @ngdoc service
* @name module-name.ClassName
*
* @description
* Example class.
*/
angular
.module ('module-name')
.factory('ClassName', ClassName) ;

function ClassName () {

(continues on next page)

1.5. Conventions 157

OpenLMIS Documentation, Release 3.0

(continued from previous page)

ClassName.prototype.exampleMethod = exampleMethod;

return ClassName;

* @ngdoc method
* @methodOf module-name.ClassName
* @name ClassName

* @description
* Creates a new instance of the ClassName class.

* @param {Object} parameter the constructor parameter
* @return {Object} the object of the ClassName class
*/
function ClassName (parameter) {
this.parameter = parameter;

* @ngdoc method
* @methodOf module-name.ClassName
* @name exampleMethod

* @description
* Description of the example method.

* @return {Object} the result of the method
*/
function exampleMethod () {
//do something

PO
(function () {
'use strict';

J ok k
* @ngdoc service
* (@name module-name.ClassName
*

* @description

* Example class.

*/
angular
.module ('module-name')
.factory('className', className) ;
className.S$inject = ['ClassName'];

function className (ClassName) {
return new ClassName () ;

(continues on next page)

158 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

(continued from previous page)

AngulardS Conventions

This document accompanies the Ul Coding Conventions. It gives specific guidance for AngularJS modules, con-
trollers, directives, and filters.

Modules

Modules in angular should describe and bind together a small unit of functionality. The OpenLMIS-UI build process
should construct larger module units from theses small units.

Documentation

Docs for modules must contain the module name and description. This should be thought of as an overview for the
other objects within the module, and where appropriate gives an overview of how the modules fit together.

/ **
* @module module-name

* @description
* Some module description.

*/

Controller

Controllers are all about connecting data and logic from Factories and Services to HTML Views. An ideal controller
won’t do much more than this, and will be as ‘thin’ as possible.

Controllers are typically specific in context, so as a rule controllers should never be reused. A controller can be linked
to a HTML form, which might be reused in multiple contexts — but that controller most likely wouldn’t be applicable
in other places.

It is also worth noting that John Papa insists that controllers don’t directly manipulate properties in $scope, but rather
the ControllerAs syntax should be used which injects the controller into a HTML block’s context. The main rationale
is that it makes the $scope variables less cluttered, and makes the controller more testable as an object.

Conventions

Should be only object changing application $state
¢ Is used in a single context

e Don’t use the $scope variable EVER

* Use ControllerAs syntax

* Don’t $watch variables, use on-change or refactor to use a directive to watch values

1.5. Conventions 159

https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#controllers
https://docs.angularjs.org/api/ng/directive/ngController

OpenLMIS Documentation, Release 3.0

Unit Testing

* Set all items that would be required from a route when the Controller is instantiated

* Mock any services used by the controller

Documentation

The only difference between controllers and other components is the ‘.controller:” part in the @name annotation. It
makes controller documentation appear in controllers section. Be sure to document the methods and properties that
the controller exposes.

/ * %
* @ngdoc controller
+ (@name module-name.controller:controllerName

* @description
x Controller description.

*/

Directive

Directives are pieces of HTML markup that have been extended to do a certain function. This is the only place where
it is reasonable to manipulate the DOM.

Make distinction between directive and component — components use E tag and isolate scope, directive use C and
never isolate scope

Conventions

* Restrict directives to only elements or attributes
* Don’t use an isolated scope unless you absolutely have to

* If the directive needs external information, use a controller — don’t manipulate data in a link function

Unit Testing

The bit secret when unit testing a directive is to make sure to use the $compile function to return an element that is
extended with jQuery. Once you have this object you will be able to interact with the directive by clicking, hovering,
or triggering other DOM events.

describe ('SampleDirective', function() {

it ('gets compiled and shows the selected item name', function ($Scompile,
—SrootScope) {

var scope = $rootScope.S$new();
scope['item'] = {
name: "Sample Title"
}i
var element = S$compile ("<sample-directive selected='item'></sample-
—directive>") (scope);

(continues on next page)

160 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

(continued from previous page)

expect (element.text ()) .toBe ("Sample Title");
1) i

it ('responds to being clicked', function ($Scompile, $rootScope) {
var element = S$Scompile ("<sample-directive selected='item'></sample-
—directive>") (SrootScope.$new());

// check before the action
expect (element.text ()) .toBe ("No Title");

element.click();

// check to see the results of the action

// this could also be looking at a spy to see what the values are
expect (element.text ()) .toBe ("I was clicked");

Documentation

Directive docs should have well described ‘@example’ section.

Directive docs should always have ‘@restrict’ annotation that takes as a value one of: A, E, C, M or any combination
of those. In order to make directive docs appear in directives section there needs to be ‘.directive:’ part in @name
annotation.

/%%
* @ngdoc directive
@restrict A
@name module-name.directive:directiveName

E

*

@description
Directive description.

*

*

@example
Short description of how to use it.

*

* <div directiveName></div>

* Now you can show how the markup will look like after applying directive code.

* <div directiveName>

* <div>something</div>
* </div>

NN

*/

Extending a Directive

You can extend a directive by using Angular]JS’s decorator pattern. Keep in mind that a directive might be applied to
multiple places or have multiple directives applied to the same element name.

1.5. Conventions 161

OpenLMIS Documentation, Release 3.0

angular.module ('my-module')
.config(extendDirective);

extendDirective.$inject = ['Sprovide'];
function extendDirective (Sprovide) {

// NOTE: This method has you put 'Directive' at the end of a directive name
Sprovide.decorator ('OpenlmisInvalidDirective', directiveDecorator);

directiveDecorator.$inject = ['Sdelegate'];
function directiveDecorator ($delegate) {
var directive = $delegate[0], // directives are returned as an array

originallink = directive.link;

directive.link = function (scope, element, attrs) {
// do something
originallink.apply(directive, arguments); // do the original thing
// do something after

return $delegate;

Filters

Use an AngularJS filter if:
* You need to do complex formatting

¢ You need to render value in HTML, and it doesn’t make sense to include in a controller.

Documentation

Filter docs should follow the pattern from example below:

/ x %
* @ngdoc filter
* @name module-name.filter:filterName

* @description
* Filter description.

* @param {Type} input input description

* @param {Type} parameter parameter description

* @return (Type} returned value description
*

* @example

*

You could have short description of what example is about etc.

* %

<div>{{valueToBeFiltered | filterName:parameter}}</div>

*

It is a good practice to add example block at the end to make clear how to use it. As for parameters the first one should

162 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

be describing input of the filter. Please remember of ‘filter:” part. It will make sure that this one will appear in filters
section.

Unit Testing Guidelines

A unit tests has 3 goals that it should accomplish to test a javascript object:
* Checks success, error, and edge cases
* Tests as few objects as possible
¢ Demonstrates how an object should be used

With those 3 goals in mind, its important to realize that the variety of AngularJS object types means that the same
approach won’t work for each and every object. Since the OpenLMIS-UI coding conventions layout patterns for
different types of Angular]S objects, it’s also possible to illustrate how to unit test objects that follow those conventions.

Check out Angular]S’s unit testing guide, its well written and many of out tests follow their styles.
Here are some general rules to keep in mind while writing any unit tests:
» Keep beforeEach statements short and to the point, which will help other’s read your statements

* Understand how to use Spies in Jasmine, they can help isolate objects and provide test cases

Defining variables

The version of Jasmine we’re using discourages using the define-block scoped variables as they might be causing
memory leaks. In order to prevent that, it is suggested to use ‘this’ as a way of sharing variables between beforeEach,
afterEach, inject and it blocks. Keep in mind that closures inside those block will have a different context and thus
‘this’ will refer to a different object. Below are two examples on how to and how to not write unit tests for OpenLMIS.

Do

describe ('CustomResource', function() {

beforeEach (function () {
module ('custom');

inject (function ($injector) {
this.subjectUnderTest = $injector.get ('subjectUnderTest');
this.$rootScope = $injector.get ('SrootScope');

1)

this.expected = 'expectedString';
1)

describe ('returnSomething', function () ({

beforeEach (function () {
this.subjectUnderTest.prepareForTest () ;
b i

it ('should return something', function() {
var result;
this.subjectUnderTest.returnSomething ()

(continues on next page)

1.5. Conventions 163

https://docs.angularjs.org/guide/unit-testing
https://jasmine.github.io/1.3/introduction.html#section-Spies

OpenLMIS Documentation, Release 3.0

(continued from previous page)

.then (function (something) {
result = something;
//this.subjectUnderTest won't be available as we have a different_

—context here

1)
this.$rootScope. $apply();

expect (result) .toEqual (this.expected)
1) i

)i

afterEach (function () {
this.subjectUnderTest.clearAfterTest ();

)i

Don’t

describe ('CustomResource', function() {
var expected, subjectUnderTest, S$rootScope;

beforeEach (function () {
module ('custom');

inject (function ($injector) {
subjectUnderTest = $injector.get ('subjectUnderTest');

SrootScope = $injector.get ('S$rootScope');
1) i
expected = 'expectedString';
1)
describe ('returnSomething', function() {
beforeEach (function () {

subjectUnderTest.prepareForTest () ;
P

it ('should return something', function() ({
var result;
subjectUnderTest.returnSomething ()
.then (function (something) {
result = something;
by
$SrootScope.$apply();

expect (result) .toEqual (expected)

(continues on next page)

164 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

(continued from previous page)

afterEach (function () {
this.subjectUnderTest.clearAfterTest ();

)i

HTML Markup Guidelines

Less markup is better markup, and semantic markup is the best.

This means we want to avoid creating layout specific markup that defines elements such as columns or icons. Non-
semantic markup can be replicated by using CSS to create columns or icons. In some cases a layout might not be
possible without CSS styles that are not supported across all of our supported browsers, which is perfectly acceptable.

Here is a common pattern for HTML that you will see used in frameworks like Twitter’s Bootstrap (which we also
use)

<li class="row">
<div class="col-md-9">
Item Name
</div>
<div class="col-md-3">

<i class="icon icon-trash"></i>
Delete

</div>
</1li>
<div class="clearfix"></div>

The above markup should be simplified to:

<1li>

Item Name

<button class="trash">Delete</button>
</1li>

This gives us simpler markup, that could be restyled and reused depending on the context that the HTML section is
inserted into. We can recreate the styles applied to the markup with CSS such as:

* A ::before pseudo class to display an icon in the button
* Using float and width properties to correctly display the button
* A :after pseudo class can replace any ‘clearfix’ element (which shouldn’t exist in our code)

See the UI-Styleguide for examples of how specific elements and components should should be constructed and used.

HTML Views

Angular allows HTML files to have variables and simple logic evaluated within the markup.
A controller that has the same name will be the reference to vm, if the controller is different, don’t call it vin
General Conventions

* If there is logic that is more complicated than a single if statement, move that logic to a controller

1.5. Conventions 165

OpenLMIS Documentation, Release 3.0

* Use filters to format variable output — don’t format variables in a controller

HTML Form Markup

A goal for the OpenLMIS-UI is to keep business logic separated from styling, which allows for a more testable and
extensible platform. Creating data entry forms is generally where logic and styling get tangled together because of the
need to show error responses and validation in meaningful ways. Angular]S has built-in features to help foster this
type of separation, and OpenLMIS-UI extends Angular]S’s features to a basic set of error and validation features.

The goal here is to attempt to keep developers and other implementers from creating their own form submission and
validation - which is too easy in Javascript frameworks like Angular]JS.

An ideal form in the OpenLMIS-UI would look like this:

<form name="exampleForm" ng-submit="doTheThing()">
<label for="examplelnput">Example</label>
<input id="exampleInput" name="exampleInput" ng-model="example" required />
<input type="submit" value="Do Thing" />

</form>

This is a good form because:
* There is a name attribute on the form element, which exposes the FormController

* The input has a name attribute, which allow for validation passed to the FormController to be passed back to the
correct input

* ng-submit is used rather than ng-click on a button

SASS & CSS Formatting Guidelines

General SASS and CSS conventions:
* Only enter color values in a variables file
* Only enter pixel or point values in a variables file
* Variable names should be lowercase and use dashes instead of spaces (ie: $sample-variable)
* Avoid class names in favor of child element selectors where ever possible
* Files should be less than 200 lines long

* CSS class names should be lowercase and use dashes instead of spaces

SMACSS

The CSS styles should reflect the SMACSS CSS methodology, which has 3 main sections — base, layout, and mod-
ule. SMACSS has other sections and tenants, which are useful, but are not reflected in the OpenLMIS-UI coding
conventions.

Base

CSS styles applied directly to elements to create styles that are the same throughout the application.

166 Chapter 1. Contents:

https://docs.angularjs.org/guide/forms

OpenLMIS Documentation, Release 3.0

Layout

CSS styles that are related primarily to layout in a page — think position and margin, not color and padding — these
styles should never be mixed with base styles (responsive CSS should only be implemented in layout).

Module

This is a css class that will modify base and layout styles for an element and it’s sub-elements.

SASS File-Types

Since SASS pre-processes CSS, there are 3 SCSS file types to be aware of which are processed in a specific order to
make sure the build process works correctly.

Variables

A variable file is either named ‘variables.scss’ or matches ‘*.variables.scss’

Variables files are the first loaded file type and include any variables that will be used through out the application —
There should be as few of these files as possible.

The contents of a variables file should only include SASS variables, and output no CSS at any point.
There is no assumed order in which variables files will be included, which means:
* Variable files shouldn’t have overlapping variables

* Implement SASS’s variable default (!default)

Mixins

A mixin file matches the following pattern *.mixin.scss

Mixins in SASS are reusable functions, which are loaded second in our build process so they can use global variables
and be used in any other SCSS file.

There should only be one mixin per file, and the file name should match the function’s name, ie: ‘simple-
function.mixin.scss’

All Other SCSS and CSS Files

All files that match ‘.scss’ or ‘.css’ are loaded at the same time in the build process. This means that no single file
can easily overwrite another files CSS styles unless the style is more specific or uses ! imporant — This creates the
following conventions:

» Keep CSS selectors as general as possible (to allow others to be more specific)
* Avoid using !important

To keep file sizes small, consider breaking up files according to SMACSS guidelines by adding the type of classes in
the file before .scss or .css (ie: navigation.layout.scss)

1.5. Conventions 167

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#variable_defaults_

OpenLMIS Documentation, Release 3.0

1.5.6 Performance

Performance Testing

OpenLMIS focuses on performance metrics that are typical in web-applications:
* Calls to the server - how many milliseconds does this single operation take, and is the memory usage reasonable.

* Network load - how large are the resources returned from the server. Typically OpenLMIS is designed to work
in network-constrained locations, so the size, in bytes, of each resource is important.

* The number of calls the Reference UI makes - again networks being what they, we want to minimize the number
of connections that are made to accomplish a user workflow as each connection adds overhead.

* Size of the “working” data set. Here working data is defined as the data that’s needed for a user to accomplish a
task. Examples are typically Reference Data: # of Products, # of Facilities, # of Users, etc. Though also the # of
Requisitions or # of Stock Cards might factor into a user’s working data. Since OpenLMIS typically manages
countries, it’s important that we’re efficient in managing country-level data sets.

There are some areas of Performance however that OpenL.MIS typically doesn’t focus as much on:

¢ Scaling - typically we’re not concerned with tens of thousands of people needing to use the system concurrently.
Likewise we don’t typically worry yet about surges or dips in user activity requiring more or less resources to
serve those users.

Getting Started

OpenLMIS uses Apache JMeter to test RESTful endpoints. We use Taurus, and it’s YAML format, to write our test
scenarios and generate reports which our CI server can present as an artifact of every successful deployment to our
CD test server.

Keeping to our conventions, Taurus is used through a Docker image, with a simple script located at ./perfor-
mance/test.sh with tests in the directory ./performance/tests/ of a Service. Any *yml file in that test directory will
be fed to Taurus to be used against https://test.openlmis.org.

Running fest.sh will place JMeter output as well as Taurus output under ./build/performance-artifacts/. The file
stats.xml has the final summary performance metrics. Files of note when developing test scenarios:

* error-N.jtl - Contains errors and requests that led to those errors from the HTTP server.
» JMeter-N.err - Contains JMeter errors where JMeter didn’t understand the test scenario.
* modified_requests-N.jmx - Contains the generated JMeter requests (after Taurus generation).

* kpi-N.jtl - Individual metrics of a test scenario.

Running in CI

Tests run in a Jenkin’s Job that ends in -performance. This job is run as part of each Service’s build pipeline that
results in a deployment to the test server.

The reports are presented using Performance Plugin. When looking at this report you’ll see:
* A graph that shows all of the endpoints (requests) over time.

* A report for a build which includes an average over time, as well as a table showing KPIs of each request.

168 Chapter 1. Contents:

http://jmeter.apache.org/
http://gettaurus.org/
http://gettaurus.org/
https://wiki.jenkins.io/display/JENKINS/Performance+Plugin

OpenLMIS Documentation, Release 3.0

A simple Scenario (with authentication)

Nearly all of our RESTful resources require authentication, in this example we’ll show a basic test scenario that
includes authentication. The syntax and features used here are documented at Taurus’ page on the JMeter executer.

execution:
— concurrency: 1
hold-for: Im
scenario: users-get-one
scenarios:
get-user—-token:
requests:
- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetUserToken
headers:
Authorization: Basic ${__ _base64Encode (${__ P (basic—auth) })}
body:
grant_type: password
username: S${__ P (username) }
password: ${__P (password) }
extract-jsonpath:
access_token:
jsonpath: $.access_token
users—get-one:
requests:
— include-scenario: get-user-token
— url: ${__P(base-uri) }/api/users/a337ec45-31a0-4f2b-9b2e-al05c4b669bb
method: GET
label: GetAdministratorUser
headers:
Authorization: Bearer ${access_token}

The execution block defines for our test scenario users-get-one that runs 1 concurrent user, for one minute. Notice that
this definition is for the simplest of test executions - 1 user, run it enough times to get a useful sampling. We use this
sort of test execution to first get a sense of what our endpoint’s single-user characteristics are.

Next notice that we have two scenarios defined:

1. get-user-token - this is a reusable scenario, which gets a basic user authentication token, and through the extract-
Jjsonpath saves it to a variable named access_token.

2. users-get-one - this is the test scenario we’re primarily interested in: exercise the /api/users/{a specific users
uuid}. We pass the previously obtained access_token through the HTTP request’s headers.

Summary

* First test the most basic of environments: 1 user, enough times to get useful sample size.
* Re-use the scenario to obtain an access_token using include-scenario.

* It’s generally OK to use demo-data identifiers (the user’s UUID) - though it couples the test to the demo-data, it
will provide consistent results.

* Give each request a clear, semantic label. This will be used later in pass-fail criteria.

1.5. Conventions 169

http://gettaurus.org/docs/JMeter/

OpenLMIS Documentation, Release 3.0

Testing collections

To the simple Scenario we’re going to now test the performance of returning a collection of a resource:

users—-search-one-page:
requests:
— include-scenario: get-user-token
- url: ${__P(base-uri)}/api/users/search?page=1&size=10
method: POST
label: GetAUserPageOfTen
body: '{}'
headers:
Authorization: Bearer ${access_token}
Content-Type: application/json

Here we’re testing the Users resource by asking for 1 page of 10 users.

Summary

* When testing the performance of collections, the result will be influenced by the number of results returned.
Due to this prefer to test a paginated resource, and always ask for a number that exists (i.e. don’t ask for 50
when demo-data only has 40).

 Searching often requires a POST, in this case the query parameters must be in the URL.

Testing complex workflows

A complex workflow might be:
1. GET alist of periods for which requisitions may be initiated.
2. Create a new Requisition resource by POSTing with the previously returned periods available.

3. DELETE the previously created Requisition resource, so that we may test again.

initiate-requisition:
requests:
- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetUserToken
headers:
Authorization: Basic ${__ _base64Encode (${__P (user—auth)})}
body:
grant_type: password
username: ${__P (username)
password: ${__P (password)
extract-jsonpath:
access_token:
jsonpath: $.access_token
program = family planning, facility = comfort health clinic
— url: ${__P(base—-uri)}/api/requisitions/periodsForInitiate?programId=10845cb9-
—d365-4aaa-badd-b4fa39cba26a&facilityId=e6799d64-d10d-4011-b8c2-0ed4d4a3f65ces
—emergency=false
method: GET
label: GetPeriodsForInitiate
headers:

}
}

(continues on next page)

170 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

(continued from previous page)

Authorization: Bearer ${access_token}
extract-jsonpath:
periodUuid:
jsonpath: $.[:1]id
jsr223:
script-text: |

- url: ${__P(base-uri)}/api/requisitions/initiate?program=10845cb9-d365-4aaa-badd-
—bdfa39cbazbasfacility=e6799d64-d10d-4011-b8c2-0ed4dda3f65ces&suggestedPeriod=$
—{periodUuid}&emergency=false

method: POST
label: InitiateNewRequisition
headers:
Authorization: Bearer ${access_token}
Content-Type: application/json
extract-jsonpath:
reqUuid:
jsonpath: $.id
jsr223:
script-text: |

— url: ${__P(base-uri)}/api/requisitions/${reqUuid}
method: DELETE
label: DeleteRequisition
headers:
Authorization: Bearer S${access_token}

Summary

e When creating a new RESTful resource (e.g. PUT or POST), we may need to clean-up after ourselves in order
to run more than one test.

* JSR223 blocks allow us to execute basic Groovy (default). This can be especially useful when you need to
clean-up a JSON result from a previous response, such as a UUID, to use in the next request.

Simple stress testing

As mentioned, OpenLMIS performance tests tend to focus first on basic execution environments where we’re only
testing 1 user interaction at a time. However there is a need to do basic stress testing, especially for endpoints which
are used frequently. For example we’ve seen the authentication resource used repeatedly in all our previous examples.
Lets stress test it.

modules:
local:
sequential: true

execution:
- concurrency: 10
hold-for: 2m

(continues on next page)

1.5. Conventions 171

OpenLMIS Documentation, Release 3.0

(continued from previous page)

scenario: get-user-token
— concurrency: 50
hold-for: 2m
scenario: get-service-token

scenarios:
get-user—-token:
requests:
- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetUserToken
headers:
Authorization: Basic ${__ _base64Encode (${__P (user—auth) })}
body:
grant_type: password
username: ${__ P (username) }
password: ${__ P (password)}
get-service-token:
requests:
- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetServiceToken
headers:
Authorization: Basic ${__base64Encode (${__ P (service—auth) })}
body:
grant_type: client_credentials

Here we’ve defined 2 tests:
1. Authenticate as if you’re a person.
2. Authenticate as if you’re another Service (a Service token).

The stress testing here introduces important changes in our execution block:

- concurrency: 10
hold-for: 2m
scenario: get-user-token

Instead of defining 1 user, here we’ll have 10 concurrent ones. Instead of running the test for 1 minute, we’re going to
run the test as many times as we can for 2 minutes. For further options see the Taurus’ Execution doc.

When stress testing, it’s important to remember that too much simply isn’t useful, and only slows down the test. Nor
do we presently have a test infrastructure in place that allows for tests to originate from multiple hosts.

Summary

* You can define multiple execution definitions for the same scenario, so the first might give us the basic perfor-
mance characteristics, the second might be a stress test.

* By default the tests defined in the execution block are run in parallel. This can be changed to by ran sequential
with sequential: true.

* Choose a reasonable number of concurrent users. Typically less than a dozen is enough.

* Choose a reasonable time to hold the test for. Typically 1-2 minutes is enough, and no more than 5 minutes
unless justifiable.

172 Chapter 1. Contents:

http://gettaurus.org/docs/ExecutionSettings/#Load-Profile

OpenLMIS Documentation, Release 3.0

* Remember that we don’t have a performance testing infrastructure in place that can concurrently send requests
to our application from multiple hosts. OpenLMIS performance testing typically only requires the most basic
stress testing.

Testing file uploads

In this short example we’re going to send a request to the catalog items endpoint and upload some items as a CSV file.

upload—-catalog-items:
requests:
— include-scenario: get-user—-token
- url: ${__P(base-uri)}/api/catalogltems?format=csv
method: POST
label: UploadCatalogItems
headers:
Authorization: Bearer S${access_token}
upload-files:
- param: file
path: /tmp/artifacts/catalog_items.csv

Summary

* When uploading a file we don’t have to worry about setting correct content header as Taurus take care of it on its
own when using upload-files block. This behavior is described in the HTTP Requests of the Taurus user manual

Pass-fail criteria

With the above tests defined, we can now write pass-fail criteria. This is especially useful if we want our test to fail
when the performance is less than what we’ve defined.

reporting:
— module: passfail
criteria:
- avg-rt of GetUserToken>300ms, continue as failed
- avg-rt of GetServiceToken>300ms, continue as failed

This allows us to fail the test if the average response time for either of the two tests was greater than 300ms. See the
Taurus Passfail doc for more.

Summary

* Write the pass-fail criteria within the test definition.

Performance Acceptance Criteria

With Taurus we can now add basic acceptance criteria when working on new issues. For example the acceptance
criteria might say:

* the endpoint to retrieve 10 users should complete in 500ms for 90% of users

1.5. Conventions 173

https://gettaurus.org/docs/JMeter/#HTTP-Requests

OpenLMIS Documentation, Release 3.0

This would lead us to write a performance test for this new GET operation to retrieve 10 users, and we’d add a pass-fail
criteria such as:

reporting:
- module: passfail
criteria:
Get 10 Users is too slow: p90 of GetlOUsers>500ms, continue as failed

Read the Taurus Passfail doc for more.

Next Steps (WIP)

We’ve covered basic performance testing, stress testing, and pass-fail criteria. Next we’ll be adding:
* Loading performance-oriented data sets (e.g. what happens to these requests when there are 10,000 products).
 Using Selenium to mimic browser interactions, to give us:
— How many http requests does a page incur.
— Network payload size.

* Failing deployments based on performance results.

Performance Data

Performance data in OpenLMIS is meant to be data that helps us answer questions such as:

* What happens to the server and the operations it provides when there are 10,000 orderables, users, facilities,
requisitions, etc?

* What happens when all that data is being used by many concurrent users?
* What’s the impact on network performance, especially for those in low resource environments?
* What sort of deployment topology works best for typical implementations?
* Does the UI (and possibly other clients) display large sets of data well?
Some basic characteristics of performance data:
* there is a lot of it

* it doesn’t have to look nice or make that much sense to domain experts (e.g. a Vaccine could be randomly gen-
erated to be ordered through the essential meds Program, and that’s okay). Lorem ipsum and random numbers
are just fine here.

* it must be deployable in a deployment topology that is as close to a production setup as possible. After all
it’s for performance testing, and performance testing on a local laptop doesn’t tell us (much) about anything a
production server running in the cloud would experience.

Where is performance data located?

Performance data is stored in Git within each Service that defines it, much like demo-data. In fact in most cases
Performance Data builds off of demo-data, and so a Service should be able to load performance data or demo-data in
very similar ways.

174 Chapter 1. Contents:

http://gettaurus.org/docs/PassFail/

OpenLMIS Documentation, Release 3.0

How to load performance data

Like demo-data, performance data is an optional set of data that may be loaded when the Service starts. To do this a
Service should load performance data, likely after any demo-data, by looking for the profiles set in the environment
variable spring.profiles.active. If this environment variable contains the string performance—-data,
then the service should load this data before it’s operational for use.

How to create and manage performance data

Performance data is generated with the help of the tool Mockaroo. This tool is used to define schemas which match
the Service’s tables and it may generate large CSVs which are then stored in the Service in git. CSVs are used as
they easily enable the use of foreign key / UUID lookups when a Mockaroo dataset is used (as this Mockaroo dataset
video demonstrates). These CSVs are placed in git for the Service to load the data, however if the Service needs new
performance data, the database schema changes or something else causes the performance data to need to be updated,
the OpenLMIS Mockaroo account should be used to generate a new set, which will then be stored in the Service.

What types of performance data should be created?

Performance data is relatively expensive and tedious to maintain given the questions we’re trying to answer. While it’s
necessary to do so, here are some general guidelines for what to spend time generating, and what not to:

Do

* Generate performance data that will allows performance tests to reflect country data needs.

 Try to generate data that’s more right than random. Random is okay, However if the tool has a sufficiently large
set of facilities, or products, use it.

* Respect database constraints, foreign keys, references to IDs in other Services etc

» Keep in mind that some UUIDs need to be known. They can’t be generated. You’ll need to know a few of these
key UUIDs (e.g. Program, User, etc) in order to construct useful performance tests.

Don’t

* Overcomplicate the data. 1 billion facilities, a trillion requisitions, 1000 programs just aren’t anywhere near
likely and just take longer to load and more time to maintain. 10k facilities, 100k requisitions, 10 programs are
much more representative.

 Similarly, don’t generate data when demo-data already has enough. E.g. demo data already has a few Programs,
you’re time is better spent setting up one of those programs to have 10k facility type approved products than
you are generating 100 programs.

* Don’t build performance tests off of generated IDs. While Mockaroo makes it easy to build sets of data with
referential integrity, using generated IDs hardcoded in performance tests will result in more brittle tests.

Performance Tips

1.5. Conventions 175

http://mockaroo.com
https://youtu.be/XATDlwG1azU
https://youtu.be/XATDlwG1azU

OpenLMIS Documentation, Release 3.0

Testing and Profiling

Knowing where to invest time and resources into optimization is always the first step. This document will briefly cover
the highlights of two tools which help us determine where we should invest our time, and then we’ll dive into specific
strategies for making our performance better.

To see how to test HTTP based services see Performance Testing.

Profiling

After we’ve identified that a HTTP operation is slow, there are two simple tools that can help us in understanding why:

e SLF4] Profiler: useful in printing latency meassurements to our log. It’s cheap and a bit inaccurate, though quite
effective and it works in all production environments.

* Visual VM: perhaps the most well known Java profiling tool can give great information about what the code is
doing, however since it needs to connect directly to the JVM running that Service’s code, it’s better suited for
local development environments rather than debugging production servers.

The usefulness of basic profiling metrics from production environments can’t be understated. Performance issues
rarely occur in local development environments and the people most impacted by slow performance are people using
production systems. Just as our performance tests operate against a <no title> that tries to match what most of our
customers use, so to is it useful to know how that code is performing in customer implementations. For these reasons
this document will focus more on logging performance metrics with SLF4] Profiler rather than VisualVM.

Using SLF4]J Profiler in Java code is as simple as:

Profiler profiler = new Profiler ("GET_ORDERABLES_SEARCH");
profiler.setLogger (XLOGGER); // can be SLF4J Logger or XLogger

profiler.start ("CHECK_ADMIN_RIGHT");
rightService.checkAdminRight (ORDERABLES_MANAGE) ;

profiler.start ("ORDERABLE_SERVICE_SEARCH") ;
Page<Orderable> orderablesPage = orderableService.searchOrderables (queryParams,
—pageable) ;

profiler.start ("ORDERABLE_PAGINATION") ;

Page<OrderableDto> page = Pagination.getPage (OrderableDto.newlnstance (
orderablesPage.getContent ()),
pageable,
orderablesPage.getTotalElements ());

profiler.stop().log();

This will generate log statements that look like the following:

2017-07-24T19:49:45+00:00 e2f424e5b617 [nio—-8080-exec—-5] DEBUG
org.openlmis.referencedata.web.OrderableController #012+ Profiler
[GET_ORDERABLES_SEARCH] #012 |

-— elapsed time [CHECK_ADMIN_RIGHT] 1173.997 milliseconds.#012|

-— elapsed time [ORDERABLE_SERVICE_SEARCH] 199.251 milliseconds.#012]
-— elapsed time [ORDERABLE_PAGINATION] 0.255 milliseconds.#012]|

—— Total [GET_ORDERABLES_SEARCH] 1373.511 milliseconds.

Placed in the Controller for this HTTP operation we can tell:

1. Most of the time for this innvocation is spent checking if the user has a right: more than 1 second.

176 Chapter 1. Contents:

https://www.slf4j.org/extensions.html#profiler
https://visualvm.github.io/

OpenLMIS Documentation, Release 3.0

Fetching the entities from the database took about 14% of the time
Turning them into DTOs used up less than a millisecond.

We’d have to look at the Service’s access log to find where additional latency is introduced that we can’t meas-
sure here: serialization, IO overhead, Spring Boot magic, etc

This easily lets us know that improving the performance of the permission check might be well worth the effort.
Since this information is in the logs we can also monitor and graph the performance of the data retrievel latency
(ORDERABLE_SERVICE_SEARCH) in real-time with a well crafted search on our logs.

SLF4J Profile Conventions

Use the Profiler in Controller methods for code that’s released to production. While in development you can
use a Profiler anywhere you wish, it tends to clutter the code and the logs longer term. A few well placed
Profiler.start() statements, left in the Controller however, can pay dividends longer term when performance
issues need to be diagnosed in implementations.

Prepend the HTTP operation to the beginning of the name. So GET_ORDERABLES_SEARCH and not ORDER-
ABLES_SFEARCH.

Prefer all upper-case snake_case. e.g. GET_ORDERABLES_SEARCH never getOrderablesSearch.

Be descriptive and strategic in your Profiler.start() names and locations. E.g. use a new Profiler.start() before a
block/method that does something unlike the code before it: checking permissions, retrieving data, performing
an update, returning a result. Use names that are clear for those who’ll be reading the logs in production systems
years from now.

Logging

In our service-architecture we have many different components where latency can be introduced and therefore logs we
need to examine when diagnosing where time is being spent:

From the top of the stack down:

1.

The Amazon ELB: typically the first place a request arrives, there is usually a very minor bit of latency incurred
here. ELB logging if turned on is typically logged to S3.

Nginx reverse-proxy: Nginx is the place for finding HTTP operations. Requests from clients are routed through
Nginx to upstream (aka backend) Services, and from service to service. The Nginx access log is the first place
to see how long it took to process the request and how much time was spent in an upstream service performing
the operation.

Service HTTP access log: these (tomcat) access logs are not always prominent however they can be turned on
to give an idea of how much time the Service’s HTTP server spent serving the request as opposed to how much
time was spent transmitting the data. With good network connectivity between Nginx and backend Service
(typically localhost), this is rarely an issue, though it can sometimes uncover hidden issues.

Service’s Profiler statements: these logging statements from Java code are treated like all other Java logging
statements and are channeled through our centralised Rsys1log container to be aggregated and written to disk
(and later picked up by log monitoring service - Scalyr).

Database: queries take time, transactions can block, etc. Database logs can uncover both the time specific
queries take as well as the actual SQL that’s being run in the database. These logs are typically sourced and
monitored through the RDS service (and Scalyr).

Lets look at an example of a call seen by Nginx and the Profiler.

Service’s Profiler (again):

1.5. Conventions 177

https://github.com/OpenLMIS/openlmis-nginx#nginx-access-log-format

OpenLMIS Documentation, Release 3.0

2017-07-24T19:49:454+00:00 e2f424e5b617 [nio-8080-exec—-5] DEBUG
org.openlmis.referencedata.web.OrderableController #012+ Profiler
[GET_ORDERABLES_SEARCH] #012 |

-— elapsed time [CHECK_ADMIN_RIGHT] 1173.997 milliseconds.#012]|

—-— elapsed time [ORDERABLE_SERVICE_SEARCH] 199.251 milliseconds.#012]
-— elapsed time [ORDERABLE_PAGINATION] 0.255 milliseconds.#012]|

—— Total [GET_ORDERABLES_SEARCH] 1373.511 milliseconds.

Nginx access log:

10.0.0.238 - - [24/Jul/2017:19:49:45 +0000] "POST /api/orderables/search HTTP/1.1"
200 18455 "-" "Java/1.8.0_92" 1.401 0.000 1.401 1.401

Read the Nginx access log format for the details of what these numbers mean. What we can tell comparing these two
is that:

* the total time to the user (just for this operation, not a web-page) was 1.4 seconds.
» All of that time was spent by the Reference Data service (because response time == upstream time).

* There is 28ms of latency not accounted for in our Profiler. It could be time spent in serialization of Java objects,
Spring Boot overhead, tomcat overhead, network overhead (e.g. we were suffering from a 200ms delay due to a
TCP configuration being off previously).

* Our user must be on a fast network connection, as Nginx spent the same time serving the response as it did
getting the results from the upstream server. (a bit oversimplified).

* Approx 18.5KB was returned in this Orderables Search.

RESTful representations and the JPA to avoid
Avoid loading entities unnecessarily

Don’t load an entity object if you don’t have to; use Spring Data JPA exists () instead. A good example of this is
in the RightService for Reference Data. The checkAdminRight () checks for a user when it receives a user-based
client token. If the user is checking their own information, they only need to verify the existence of the user, instead of
getting the full User info (using findOne()). Spring Data JPA’s CrudRepository supports this through the method
exists ().

In Spring Data JPA 1.11°s (shipped in Spring Boot 1.5+) CrudRepository ships with exists () support for more
than just the primary key column using Projections.

For example, take this bit of code that was found when searching for Orderables by a Program’s code:

// find program 1if given
Program program = null;
|

if (programCode != null) {
program = programRepository.findByCode (Code.code (programCode)) ;
if (program == null) {

throw new ValidationMessageException (ProgramMessageKeys.ERROR_NOT_FOUND) ;

This requires a trip to the database, which will need to pull the entire Program entity, back to the Service which will
then turn it into a Java object... which will finally do what we actually wanted and check if the Program is null. Using
an exists check, we can write code such as:

178 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-nginx#nginx-access-log-format

OpenLMIS Documentation, Release 3.0

// find program if given
Code workingProgramCode = Code.code (programCode) ;
if (false == workingProgramCode.isBlank ()
&& false == programRepository.existsByCode (workingProgramCode)) {
throw new ValidationMessageException (ProgramMessageKeys.ERROR _NOT_FOUND) ;

The important part here is the use of the repositories existsByCode (.. .), which is a Spring Data projection.
This will avoid pulling the row, avoid turning a row into a Java object, and in general can save upwards of 100ms as
well as the extra memory overhead. If the column is indexed (and well indexed), the database may even avoid a trip to
disk, which typically can bring this check in under a millisecond.

Make sure that the returning object is as minimal as possible. Sometimes an endpoint returns the whole representation
while a basic representation is enough. Some of the properties included in the full DTO are unnecessary in the given
endpoint and not included in the basic version so we can simply use the second one. You can also use expand pattern
to minimize the entity size in the response.

Expand pattern

Using ObjectReference and expand pattern we can reduce the size of a response but with the opportunity to include
the whole object instead of references when it is necessary. We can specify properties that need to be expanded and
the rest of them will be object references. The example of use this pattern:

@QRequestMapping (value = "/orders/{id}", method = RequestMethod.GET)

@ResponseBody

public OrderDto getOrder (@PathVariable ("id") UUID orderId,
@RequestParam(required = false) Set<String> expand) {

Order order = orderRepository.findOne (orderId);
if (order == null) {

throw new OrderNotFoundException (orderId);
} else {

permissionService.canViewOrder (order) ;

OrderDto orderDto = orderDtoBuilder.build(order);
expandDto (orderDto, expand);

return orderDto;

protected void expandDto (Object dto, Set<String> expands) {
objReferenceExpander.expandDto (dto, expands);

Here you can find implementation of the method in ObjReferenceExpander class.

Use Database Paging

Database paging is vastly more performant and efficient than Java paging or not paging at all. How much more?
Before the Orderable’s search resource was paged in the database, it was paged in Java. In Java pulling a page of only
10 Orderables out of a set of 10k Orderables took around 20 seconds. After switching to database paging, this same
operation took only 2 seconds (10x more performant) and of that 95% of those 2 seconds are spent in an unrelated
permission check.

The database paging pattern was established and as of this writing is not well enough adopted. Remember when
paging to:

1.5. Conventions 179

https://docs.spring.io/spring-data/rest/docs/current/reference/html/#projections-excerpts.projections
https://github.com/OpenLMIS/openlmis-fulfillment/blob/0efdc844a4b5870e3368dc97b4dccac13ff5d132/src/main/java/org/openlmis/fulfillment/service/ObjReferenceExpander.java#L91
https://groups.google.com/d/msg/openlmis-dev/WniSS9ZIdY4/B7vNXcchBgAJ

OpenLMIS Documentation, Release 3.0

1. Follow the pagination API conventions.
2. Use Spring Data Pageable all the way to the query.

3. Spring Data projection makes this easy (more so in 1.11+). So code like this just works:

@Query ("SELECT o FROM Orderable o WHERE o.id in ?1")
Page<Orderable> findAllById(Iterable<UUID> ids, Pageable pageable);

4. Ifit’san EntityManager.createQuery (), you'll need to run 2 queries: one for a count () and one for
the (sub) list.

5. If you’re a client, use the query parameters to page the results - otherwise our convention will be to return the
largest page we can to you, which is slower.

Follow the pattern in Orderable search.

Eager Fetching & Lazy Loading

Eager fetching and lazy loading refer to the loading strategy an ORM takes when loading related Entities to the one
that you’re interested in. When done right, eager fetching can eliminate the N+1 problem in the next section. When
done wrong, your service can consume all it’s available memory and stall out.

Most often eager loading is not the right strategy to choose, and while Hibernate’s default is to always use lazy loading,
we should remember that Hibernate uses the JPA recommendation to lazily load all *ToMany relationships and eagerly
fetch *ToOne relationships.

Eagerly fetching *ToOne relationships is not wrong, however we can’t talk about eager fetching and lazy loading
without analyzing what the typical uses of retrieving data/entities is. For that we’ll look at the N+1 problem.

N+1 loading

In the simplest terms, N+1 loading occurs when an entity is loaded, related entities are marked as lazily loaded,
and then the Java code (service, controller, etc) navigates to the related entity causing the JPA implementation to go
load that related entity, which typically is an IO event back to the database. This is especially egregious when the
related entity is actually some sort of collection (*ToMany relationship). For each element that’s navigated to in the
relationship, often another 10 call occurs back to the database.

Avoiding N+1 loading is best done through designing for the common case. Take for example a User entity, which
has a lazily loaded OneToMany relationship with RoleAssignments. We might think that the common case we should
design for is updating a user and their RoleAssignments. If we design for this we’ll likely place the full RollAssignment
resource in the representation for GET and PUT of a User. Since the relation is lazily loaded we’ll incur N+1 loads: 1
for the User and N for the # of RoleAssignments. If we changed the relation to be eagerly fetched, then we’d pull all
N RollAssignments when any bit of Java code loaded the User - even if we just needed the User’s ID or name.

The simplest solution therefore is to use a lazily loaded relation, and remove the full representations of RoleAssign-
ments from the User resource. After all, updating a User is actually pretty uncommon compared to retrieving a User,
or even retriving the User with RoleAssignments to check that user’s rights. If we do actually need a User’s RoleAs-
signments, we don’t actually want to retrieve them with the User, rather we’ll likely want a specific sub Resource of a
User for managing their RoleAssignments. This sub-resource would typically look like:

e /api/users/{id}
e /api/users/{id}/roleAssignments

This would optimize the common case (just load a User to get their name/profile), and provide a seperate resource
which could be optimized for pulling that User’s RoleAssigments in one trip to the database.

180 Chapter 1. Contents:

https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md#pagination
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html#repositories.special-parameters
https://docs.spring.io/spring-data/rest/docs/current/reference/html/#projections-excerpts.projections
https://github.com/OpenLMIS/openlmis-referencedata/blob/8de4c200aaf7ccb3dc1e450eb606185a953a8448/src/main/java/org/openlmis/referencedata/web/OrderableController.java#L157

OpenLMIS Documentation, Release 3.0

Summary

* Build RESTful resource representations that are shallow: that is don’t load more than just the single entity being
asked for.

* No FETCH JOINS

* Don’t use eager fetching unless it’s really safe to do so. It might seem to solve the above problem, but it can go
awry quickly. Just use lazy loading.

* During development you can set environment variables to show what SQL is actually being run by Hibernate.
» Use expand pattern.

» Replace full DTO with the basic version when it exists and it is possible.

Database JOINs are expensive

Simply put a database join is expensive. While our Services should not denormalize to avoid many joins, we should
consider the advice in the FlattenComplexStructures section, especially when such a representation is used frequently
by other clients.

Indexes

When done right an index can prevent the database from ever having to go to disk - a slow operation. Done wrong and
a plethora of indexes can eat up memory and not prevent disk operations.

Some tips (PostgreSQL):

¢ The primary key is indexed. When you know what you want, using it’s primary key, a UUID, is usually the most
effecient.

 Foreign keys are not automatically indexed in PostgreSQL, however they almost always should be.
* You almost always want a B-tree index (the default).

¢ Unique columns are some of the best indicies, when it’s not a unique column, keep in mind that low cardinality
indexes negatively impact performance

* Don’t over-index, each index takes up memory. Choose them based on the common search (i.e. WHERE clause)
and prefer to search based on high-cardinality columns with indexes.

* More indexing tips

Flatten complex structures

We should take complex structures that do not change often, flattening and storing them in the database. This would
create a higher expense in writes, but improve performance in reads. Since reads would be more common than writes,
the trade-off is beneficial overall.

A good example here are the concept of permission strings. The role-based access control (RBAC) for users is
complex, with users being assigned to roles potentially by program, facility, both, or neither. However, all of the
rights that a user has can be represented by a set of permission strings, with complexity represented in different string
formats. Formats as follows:

* RightName - for general rights
» RightNamelFacilityUUID - for fulfillment rights

1.5. Conventions 181

http://learningviacode.blogspot.nl/2012/08/fetch-join-and-cartesian-product-problem.html
https://stackoverflow.com/questions/30118683/how-to-log-sql-statements-in-spring-boot
https://stackoverflow.com/questions/173726/when-and-why-are-database-joins-expensive
https://www.ibm.com/developerworks/data/library/techarticle/dm-1309cardinal/
https://www.ibm.com/developerworks/data/library/techarticle/dm-1309cardinal/
https://devcenter.heroku.com/articles/postgresql-indexes

OpenLMIS Documentation, Release 3.0

* RightNamelFacilityUUIDIProgramUUID - for supervision rights

The different parts of the permission are in different parts of the string, and each part is delimited with a delimiter
(pipe symbol in this case).

These strings, or each part of these strings, are saved as rows in a separate table and retrieved directly. This dramatically
improves read performance, since we avoid retrieving the complex RBAC hierarchy and manipulating it in the Java
code.

See https://groups.google.com/d/msg/openlmis-dev/wKqgpJ2RgBA/uppxJGJiAwAlJ for further discussion about per-
mission strings.

HTTP Cache
E-tag and if-none-match

HTTP Caching in a nut-shell is supporting the use of fields in an HTTP header that can help identify if a previous
result is no longer valid. This can be very useful for the typical OpenLMIS user that is often in an environment with
low network bandwidth.

In our Spring services this can be as simple as:

QRequestMapping (value = "/someResource", method = RequestMapping.GET)
public ResponseEntity<SomeEntity> getSomeResource (@PathVariable ("id") UUID,
—resourcelId) {

// do work

return ResponseEntity
.ok ()
.eTag(Integer.toString (someResource.hashCode()))
.body (someResource) ;

The key points here are:
» someResource must accurately implement hashCode().
* The Object’s hashCode is returned to the HTTP client (browser) in the :code‘etag* header.

* On subsequent calls the HTTP client should include the HTTP header if-none-match with the previously returned
etag value. If the etag value is the same, a HTTP 304 is returned, without a body, saving network bandwidth.

This simple implementation won’t however save the server from processing the request and generating the et ag from
the Object’s hashCode(). If this server operation is particularly expensive, further optimization should be done in the
controller to use a field other than the hashCode () and to return early:

@QRequestMapping (value = "/someResource", method = RequestMapping.GET)
public ResponseEntity<SomeEntity> getSomeResource (
@RequestHeader (value="1if-none-match") String ifNoneMatch,
@PathvVariable ("id") UUID resourcelId) {

if (false == StringUtils.isBlank (ifNoneMatch)) {
long versionEtag = NumberUtils.toLong(ifNoneMatch, -1);
if (someResourceRepo.existsByIldAndVersion (resourceld, versionEtag)) {

return ResourceEntity
.ok ()

(continues on next page)

182 Chapter 1. Contents:

https://groups.google.com/d/msg/openlmis-dev/wKqgpJ2RgBA/uppxJGJiAwAJ
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching

OpenLMIS Documentation, Release 3.0

(continued from previous page)

.etag (ifNoneMatch) ;

// do work

return ResponseEntity
.ok ()
.eTag(Integer.toString (someResource.getVersion())
.body (someResource) ;

The key to the above is using a property of an entity that changes every time the object changes, such as one marked
with @Version, to use as the resource’s etag. By storing the basis of the etag in the database, we can run a query
which simply goes and sees if that entity still has that version, and if it does we can return a HTTP 304. The property
used here could be anything, so long as we can search for it in a way that saves processing time (hint: a good choice
with high-cardinality would be a multi-column index on the id and the version). Another good choice could be a
LastModifiedDate.

Cache-control

WIP:
* no-cache
* private

* max-age

Performance
The OpenLMIS-Ul is a large application that will be running in a web browser with less RAM and processing power
than your computer. This is a fair statement, because if you are reading this, you are probably a developer.

This set of conventions is about detecting, diagnosing, and fixing common performance issues that have been a problem
in the OpenLMIS-UL

Blocking the DOM

Use asynchronous Javascript (promises) so you don’t block the thread. This will cause web browers to think the
OpenLMIS-UI is crashing, and it will try to close the browser tab.

Memory Leaks

This one is a bit tricky. It’s fairly hard to create a memory leak in AngularJS unless you’re mixing it with other external
libraries that are not based on AngularJS(especially jQuery). Still, there are some things you need to remember while
working with it, this article provides some general insight on how to find, fix and avoid memory leaks, for more
detailed info I would suggest reading this article(it’s awesome!).

1.5. Conventions 183

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#auditing.basics
http://www.dwmkerr.com/fixing-memory-leaks-in-angularjs-applications/

OpenLMIS Documentation, Release 3.0

Finding memory leaks

I won’t lie, finding out if your application has some memory leaks is annoying, and localizing those leaks is even more
annoying and can take a lot of time. Google Chrome devtools is incredible tool for doing this. All you need to do is:

1. open you application
2. go to the section you want to check for memory leaks

3. execute the workflow you want to check for memory leaks so any service or cached data won’t be shown on the
heap snapshot

open devtools

go to the Profiles tab
select Take Heap Snapshot
take a snapshot

execute the workflow

© »® N A

take a snapshot again

10. go to a different state

11. take a snapshot again

12. select the last snapshot

13. now click on the All objects select and choose Objects allocated between Snapshot 1 and Snapshot 2

This will show you the list of all objects, elements and so on, that were created during the workflow and are still
residing in the memory. That was the easy part. Now we need to analyze the data we have and this might be quite
tricky. We can click on object to see what dependency is retaining them. There is some color coding here that can be
useful to you - red for detached elements and yellow for actual code references which you can inspect and see. It takes
some time and experience to understand what’s going here but it gets easier and easier as you go.

Anti-patterns

Here are some anti-pattern that you should avoid and how to fix them.

Event handlers using scope

Let’s look at the following example. We have a simple directive that binds an on click action to the element.

(function () {

'use strict';

angular
.module ('some-module')
.directive('someDirective', someDirective);

function someDirective () {
var directive = {
link: link
}i
return directive;

(continues on next page)

184 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

(continued from previous page)

function link (scope, element) {
element.on('click', onClick);

function onClick () {
scope.someFlag = true;

1NN

The problem with this link function is that we’ve created a closure with context which retains the context, the scope
and “then basically everything in the universe” until we unregister the handler from the element. That’s right, even
after the element is removed from the DOM it will still reside in the memory retained by the closure unless unregister
the handler. To do this we need to add a handler for ‘$destroy’ event to the scope object and then unregister the handler
from the element. Here’s an example how to do it.

(function () {
'use strict';

angular
.module ('some-module')
.directive ('someDirective', someDirective);

function someDirective () {
var directive = {
link: link
}i

return directive;
function link (scope, element) {
element.on('click', onClick);
scope.$on('S$Sdestroy', function() {

//this will unregister the this single handler
element.off ('click', onClick);

//this will unregister all the handlers
element.off ();
}) i

function onClick () {
scope.someFlag = true;

1.5. Conventions 185

OpenLMIS Documentation, Release 3.0

Improper use of the $rootScope.$watch method

$rootScope.$watch can be a powerful tool, but it also requires some experience to use right. It allows the developers
to create watchers that live through the whole application life and are only removed when they are explicitly said to
unregister or when the application is closed, which may result in a huge memory leaks. Here are some tips on how to
use them.

* Use $scope.$watch when possible! If you're using a watcher in a directive, it will have access to the scope
object, add the watcher to it! This way we take advantage of AngularJS automatic watcher unregistration when
the scope is deleted.

* Avoid using $rootScope.$watch in factories. Don’t use it in factories unless you’re completely sure what you’re
doing. Remember to unregister it when it is no longer needed! This takes us to the next bullet point.

* Use them in Services. Watching for current locale can be great example of that. We’re using it with service,
which is a singleton - it is only created once during application lifetime - and we want to watch for the current
locale all the time we rather won’t want to stop at any point.

» Unregister it if it is no longer needed. If you’re sure you won’t be needing that watcher any longer simply
unregister it! Here’s an example

var unregisterWatcher = S$SrootScope.S$watch('someVariable', someMethod);
unregisterWatcher () ;

Using callback functions

Using callback isn’t the safest idea either as it can cause some function retention. AngularJS gives us awesome tool to
bypass that - promises. They basically gives us the same behavior and are retention-risk free!

1.6 Deployment

Deployment is done currently through Docker and Docker Compose. A living example of deployment scripts and
documentation that the OpenLMIS product uses to deploy demo and CD environments is available in the openlmis-
deployment repository. Documentation from that repository is listed below:

404: Not Found
404: Not Found
404: Not Found
404: Not Found
404: Not Found
404: Not Found

1.7 Versioning and Releasing

1.7.1 Micro-Services are Versioned Independently

OpenLMIS version 3 introduced a micro-services architecture where each component is versioned and released inde-
pendently. In addition, all the components are packaged together into a Reference Distribution. When we refer to

186 Chapter 1. Contents:

OpenLMIS Documentation, Release 3.0

OpenLMIS 3.X.Y, we are talking about a release of the Reference Distribution, called the ref-distro in GitHub. The
components inside ref-distro 3.X.Y have their own separate version numbers which are listed on the Release Notes.

The components are each semantically versioned, while the ref-distro has “milestone” releases that are conducted
roughly quarterly (every 3 months we release 3.2, 3.3, etc). Each ref-distro release includes specific versions of the
other components, both service components and UI components.

Where We Publish Releases

All OpenLMIS source code is available on GitHub, and the components have separate repositories. Releases are tagged
on GitHub for all components as well as the ref-distro. Releases of some components, such as the service components
and UI components, are also published to Docker Hub as versioned docker images. In addition, we publish releases of
the service utility library to Maven. Moreover, release builds are kept on Jenkins forever by default.

1.7.2 Release Process

Starting with OpenLMIS 3.2.1, each release of the Reference Distribution will go through a Release Candidate process.
A Release Candidate will be shared for a Review Period of at least one week to allow for manual regression testing
and to allow community review and input. The goal is that we catch and fix issues in order to put out higher-quality
releases.

The following diagram illustrates the process, and each step is explained in detail below.

Release Candidate Process Diagram

Active Development
* Multiple agile teams develop OpenLMIS services/components and review and incorporate Pull Request contri-
butions
* Microservices architecture provides separation between the numerous components
* Automated test coverage prevents regressions and gives the team the safety net to release often

* Continuous Integration and Deployment (CI/CD) ensures developers get immediate feedback and QA activities
can catch issues quickly

* Code is peer reviewed during Jira ticket workflow and in Pull Requests

* Documentation, CHANGELOGs and demo data are kept up-to-date as code development happens in each ser-
vice/component

Do Release Preparation & Code Freeze
* Verify the pre-requisites, including all automated tests are passing and all CHANGELOGs are up-to-date; see
Release Prerequisites below under Rolling a Release
* Conduct a manual regression test cycle 1-2 weeks before the release, if possible

* Begin a Code Freeze: shift agile teams’ workloads to bugs and clean-up, rather than committing large new
features or breaking changes (’slow down” 1-2 weeks before release)

Note: Branching is not part of the current process (see ‘“We Prefer Coordination over Branching’ section below),
but may be adopted in the future along with CI/CD changes to support more teams working in parallel.

» Write draft Release Notes including sections on ‘Compatibility’, ‘Changes to Existing Functionality’, and ‘New
Features’

1.7. Versioning and Releasing 187

https://github.com/OpenLMIS/openlmis-ref-distro
http://semver.org/
https://hub.docker.com/u/openlmis/
https://github.com/OpenLMIS/openlmis-service-util

OpenLMIS Documentation, Release 3.0

* Schedule or timing for releases is documented above and may be discussed and revised by the community

Publish a Release Candidate
e Each component that has any changes since the last release is released and semantically versioned (e.g.,
openlmis-requisition:6.3.4 or openlmis-newthing:1.0.0-beta)

Note: Usually, all components are released with the Reference Distribution. Sometimes, due to exceptional
requests, the team may release a service/component at another time even when there is not another Reference
Distribution release.

* Reference Distribution Release Candidate is released with these components (e.g., openlmis-ref-distro:3.7.0-
rcl)

Note: We archive permanent documentation for every release, but not for every release candidate.

* Share Release Candidate with the OpenLMIS community along with the draft Release Notes and invite testing
and feedback

See the ‘Rolling a Release’ section further below for the specific technical steps to build, tag and publish a release of
components and the Reference Distribution.

Review Period
The overall timeline for review period starts when the first Release Candidate is shared and should last at least 1 week,
during which time subsequent Release Candidates may be published.

* The community is alerted of the upcoming release candidate date and review period via Slack and the listservs.

¢ Active Development is paused and the only development work that happens is release-critical bug fixes or work
on branches (note: branches are not yet recommended and not supported by CI/CD).

* The team conducts a full manual regression test cycle (including having developers conduct testing) according
to the Release Candidate Test Plan. For an example, see the 3.2.1 Regression Test Plan. The test plan is included
in the final Release Notes.

¢ Community members are requested to conduct user acceptance testing to submit bugs and issues with the release
candidate. Members can review and leverage the OpenLMIS manual test cases.

e OpenLMIS will run automated performance testing and review results.

* Manual bug reports are submitted in Jira, see the Reporting bugs section for details on how to submit bugs to
OpenLMIS. All bugs and issues related to the Release Candidate must be associated with the specific Release
Candidate Bugs epic. Bugs can be identified in the code, documentation, and translations.

* A triage team will review and triage all bugs submitted on a daily bases during the review period.

Fix Critical Issues

Are there critical bugs or issues associated with the release candidate? If not, after the first Release Candidate (RC1)
OpenLMIS may move directly to a release. Otherwise, OpenLMIS will fix critical issues and publish a new Release
Candidate (e.g. RC2).

* Developers fix critical issues in code, documentation, and translations. Only commits for critical issues will be
accepted. Other commits will be rejected.

» Every commit is reviewed to determine whether portions or all of the full regression test cycle must be repeated

* And we continue to hold every ticket up to our on-going guidelines and expectations:

188 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/123961802/3.2.1+Regression+Test+Plan
https://openlmis.atlassian.net/projects/OLMIS?selectedItem=com.thed.zephyr.je__project-centric-view-tests-page
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs

OpenLMIS Documentation, Release 3.0

— Every commit is peer reviewed and manually tested, and should include automated test coverage to meet
guidelines

— Every commit must correspond to a Jira ticket and have gone through review and QA steps, and have
Zephyr test cases in Jira

Once critical issues are fixed, publish a new Release Candidate and conduct another Review Period.

Publish the Release
When a Release Candidate has gone through a Review Period without any critical issues found, then this release
candidate becomes the Golden Master to be published as an official release of OpenLMIS.

» Update the Release Notes to state that this is the official release and include the date

* Release the Reference Distribution; the exact code and components in the Golden Master Release Candidate
are tagged as the OpenLMIS Reference Distribution release with a version number tag (e.g. openlmis-ref-
distro:3.7.0)

* Share the Release with the OpenLMIS community along with the final Release Notes

After publishing the release, Active Development can resume.

Releasing components outside of a Ref Distro release (draft)

At times OpenLMIS will release stable components outside the process of releasing a new Ref Distro. When a
component is released without the Ref Distro it is done on its own - without the benefits of the rigirous release process
of the Ref Distro.

Any component may be released at any time. However to release a component, it must pass the following criteria:
* All automated tests of the component must be passing.

» All dependancies must also be co-released and their automated tests passing if a change in the dependancy is
needed to successfully release the component.

¢ The release must be stable - no half-finished features or fixes.

* Since the release of the component is outside of the Ref Distro release process, implementers should be careful
in taking such releases as they haven’t been fully tested in the larger context of the Ref Distro.

Implementation Release Process

A typical OpenLMIS implementation is composed of multiple core OpenLMIS components plus some custom compo-
nents or extensions, translations and integrations. It is recommended that OpenLMIS implementations follow a similar
process as above to receive, review and verify that updates of OpenLMIS perform correctly with their customizations
and configuration.

Key differences for implementation releases:

e Upstream Components: Implementations treat the OpenLMIS core product as an “upstream” vendor distribu-
tion. When a new core Release Candidate or Release are available, they are encouraged to pull the new upstream
OpenLLMIS components into the implementations CI/CD pipeline and conduct testing and review.

* Independent Review: It is critical for the implementation to conduct its own Review Period. It may be a process
similar to the diagram above, with multiple Release Candidates for that implementation and with rounds of
manual regression testing to ensure that all the components (core + custom) work together correctly.

1.7. Versioning and Releasing 189

OpenLMIS Documentation, Release 3.0

¢ Conduct Testing/UAT on Staging: Implementations should apply Release Candidates and Releases onto test-
ing/staging environments before production environments. Testing should be conducted on an environment
that is a mirror of production (with a recent copy of production data, same server hardware, same networks,
etc). There may be a full manual regression test cycle or a shorter smoke test as part of applying a new version
onto the production environment. There should also be a set of automated tests and performance tests, similar
to the core release process above, but with production data in place to verify performance with the full data set.

* Follow Best Practices: When working with a production environment, follow all best practices: schedule a
downtime/maintenance window before making any changes; take a full backup of code, configuration and data
at the start of the deployment process; test the new version before re-opening it to production traffic; always
have a roll-back plan if issues arise in production that were not caught in previous testing.

1.7.3 Release Numbering

Version 3 components follow the Semantic Versioning standard:

» Patch releases with bug fixes, small changes and security patches will come out on an as-needed schedule (1.0.1,
1.0.2, etc). Compatibility with past releases under the Major.Minor is expected.

* Minor releases with new functionality will be backwards-compatible (1.1, 1.2, 1.3, etc). Compatibility with
past releases under the same Major number is expected.

¢ Major releases would be for non-backwards-compatible API changes. When a new major version of a compo-
nent is included in a Reference Distribution release, the Release Notes will document any migration or upgrade
issues.

The Version 3 Reference Distribution follows a milestone release schedule with quarterly releases. Release Notes for
each ref-distro release will include the version numbers of each component included in the distribution. If specific
components have moved by a Minor or Major version number, the Release Notes will describe the changes (such as
new features or any non-backwards-compatible API changes or migration issues).

Version 2 also followed the semantic versioning standard.

Goals

Predictable versioning is critical to enable multiple country implementations to share a common code base and derive
shared value. This is a major goal of the 3.0 Re-Architecture. For example, Country A’s implementation might fix
a bug or add a new report, they would contribute that code to the open source project, and Country B could use it;
and Country B could contribute something that Country A could use. For this to succeed, multiple countries using the
OpenLMIS version 3 series must be upgrading to the latest Patch and Minor releases as they become available. Each
country shares their bug fixes or new features with the open source community for inclusion in the next release.

Pre-Releases

Starting with version 3, OpenLMIS supports pre-releases following the Semantic Versioning standard.
Currently we suggest the use of beta releases. For example, 3.0 Beta is: 3.0.0-beta.

Note: the use of the hyphen consistent with Semantic Versioning. However a pre-release SHOULD NOT use multiple
hyphens. See the note in Modifiers on why.

Modifiers

Starting with version 3, OpenLMIS utilizes build modifiers to distinguish releases from intermediate or latest builds.
Currently supported:

190 Chapter 1. Contents:

http://semver.org/

OpenLMIS Documentation, Release 3.0

Modifier: SNAPSHOT Example: 3.0.0-beta-SNAPSHOT Use: The SNAPSHOT modifier distinguishes this build as
the latest/cutting edge available. It’s intended to be used when the latest changes are being tested by the development
team and should not be used in production environments.

Note: that there is a departure with Semantic Versioning in that the (+) signs are not used as a delimiter, rather a
hyphen (-) is used. This is due to Docker Hub not supporting the use of plus signs in the tag name.

For discussion on this topic, see this thread. The 3.0.0 semantic versioning and schedule were also discussed at the
Product Committee meeting on February 14, 2017.

We Prefer Coordination over Branching

Because each component is independently, semantically versioned, the developers working on that component need to
coordinate so they are working towards the same version (their next release).

Each component’s repository has a version file (gradle.properties or project.properties) that states which version is
currently being developed. By default, we expect components will be working on the master branch towards a Patch
release. The developers can coordinate any time they are ready to work on features (for a Minor release).

If developers propose to break with past API compatibility and make a Major release of the component, that should
be discussed on the Dev Forum. They should be ready to articulate a clear need, to evaluate other options to avoid
breaking backwards-compatibility, and to document a migration path for all existing users of the software. Even if
the Dev Forum and component lead decide to release a Major version, we still require automated schema migrations
(using Flyway) so existing users will have their data preserved when they upgrade.

Branching in git is discouraged. OpenLMIS does not use git-flow or a branching-based workflow. In our typical
workflow, developers are all contributing on the master branch to the next release of their component. If developers
need to work on more than one release at the same time, then they could use a branch. For example, if the component
is working towards its next Patch, such as 1.0.1-SNAPSHOT, but a developer is ready to work on a big new feature
for a future Minor release, that developer may choose to work on a branch. Overall, branching is possible, but we
prefer to coordinate to work together towards the same version at the same time, and we don’t have a branch-driven
workflow as part of our collaboration or release process.

Code Reviews and Pull Requests

We expect all code committed to OpenLMIS receives either a review from a second person or goes through a pull
request workflow on GitHub. Generally, the developers who are dedicated to working on OpenLMIS itself have
commit access in GitHub. They coordinate in Slack, they plan work using JIRA tickets and sprints, and during their
ticket workflow a code review is conducted. Code should include automated tests, and the ticket workflow also includes
a human Quality Assurance (QA) step.

Any other developers are invited to contribute to OpenLMIS using Pull Requests in GitHub at any time. This includes
developers who are implementing, extending and customizing OpenLLMIS for different local needs.

For more about the coding standards and how to contribute, see contributionGuide.md.
Future Strategies
As the OpenLLMIS version 3 installation base grows, we expect that additional strategies will be needed so that new

functionality added to the platform will not be a risk or a barrier for existing users. Feature Toggles is one strategy the
technical community is considering.

1.7. Versioning and Releasing 191

https://groups.google.com/forum/#%21topic/openlmis-dev/cDV42HOdvCI
https://openlmis.atlassian.net/wiki/display/OP/February+14+2017
https://groups.google.com/forum/#%21forum/openlmis-dev

OpenLMIS Documentation, Release 3.0

1.7.4 Rolling a Release

Below is the process used for creating and publishing a release of each component as well as the Reference Distribution
(OpenLMIS 3.X.Y).

Goals

What'’s the purpose of publishing a release? It gives us a specific version of the software for the community to test
drive and review. Beta releases will be deployed with demo data to the UAT site uat.openlmis.org. That will be a
public, visible URL that will stay the same while stakeholders test drive it. It will also have demo data and will not be
automatically wiped and updated each time a new Git commit is made.

Prerequisites

Before you release, make sure the following are in place:

e Demo data and seed data: make sure you have demo data that is sufficient to demonstrate the features of this
release. Your demo data might be built into the repositories and used in the build process OR be prepared to run
a one-time database load script/command.

* Features are completed for this release and are checked in.
¢ All automated tests pass.

* Documentation is ready. For components, this is the CHANGELOG.md file, and for the ref-distro this is a
Release Notes page in the wiki.

Releasing a Component (or Updating the Version SNAPSHOT)

Each component is always working towards some future release, version X.Y.Z-SNAPSHOT. A component may
change what version it is working towards, and when you update the serviceVersion of that component, the other
items below need to change.

These steps apply when you change a component’s serviceVersion (changing which -SNAPSHOT the codebase is
working towards):

* If the component that you are about to release depends on the openlmis-service-util, verify that it uses a stable
version of that library. If it uses a snapshot version, a release of openlmis-service-util is required before you can
proceed.

* Within the component, set the serviceVersion property in the gradle.properties file to the new -SNAPSHOT
you’ve chosen.

— See Step 3 below for details.

* Update openlmis-ref-distro to set docker-compose.yml to use the new -SNAPSHOT this component is working
towards.

— See Step 5 below for details.

— Use a commit message that explains your change. EG, “Upgrade to 3.1.0-SNAPSHOT of openlmis-
requisition component.”

¢ Update openlmis-deployment to set each docker-compose.yml file in the deployment/ folder for the relevant
environments, probably uat_env/, test_env/, but not demo_env/

— See Step 7 below for details.

192 Chapter 1. Contents:

http://uat.openlmis.org

OpenLMIS Documentation, Release 3.0

— Similar to above, please include a helpful commit message. (You do not need to tag this repo because it is
only used by Jenkins, not external users.)

» Update openlmis-contract-tests to set each docker-compose...yml file that includes your component to use
the new -SNAPSHOT version.

— Similar to the previous steps, see the lines under “services:” and change its version to the new snapshot.
— You do not need to tag this repo. It will be used by Jenkins for subsequent contract test runs.

* (If your component, such as the openlmis-service-util library, publishes to Maven, then other steps will be
needed here.)

Note: usually during a release many docker images are built in a short time. It may happen that the CI build process
fails because of a docker pull rate limit which is 250 per 6 hours. It is a limitation of a free version of a dockerhub
account.

Patch Releasing a Component

1. Create a hotfix branch that includes ‘rel-’ prefix and the patch version, e.g. ‘rel-10.0.1°

2. Set the serviceVersion property in the gradle.properties file to the patch version with SNAPSHOT suffix, e.g.
10.0.1-SNAPSHOT.

3. Make sure that Jenkins builds the branch successfully. If needed, run the job with ‘contractTestsBranch’ param-
eter set to the branch of contract-tests repository containing your ref-distro release, e.g. ‘v3.3.0’.

4. Run performance tests
5. If all passes, remove SNAPSHOT suffix from the serviceVersion property.

6. Verify that the patch release is available on docker hub.

Releasing the Reference Distribution (openimis-ref-distro)
When you are ready to create and publish a release (Note that version modifiers should not be used in these steps - e.g.
SNAPSHOT):

1. Select a tag name (e.g. ‘3.3.0”) based on the numbering guidelines above.

2. The service utility library should be released prior to the Services. Publishing to the central repository may take
some time, so publish at least a few hours before building and publishing the released Services:

1. Update the serviceVersion of GitHub’s openlmis-service-util
2. Check Jenkins built it successfully

3. At Nexus Repository Manager, login and navigate to Staging Repositories. In the list scroll until you find
orgopenlmis-NNNN. This is the staged release.

4. Close the repository, if this succeeds, release it. More information.

5. Wait 1-2 hours for the released artifact to be available on Maven Central. Search here to check: https:
/Isearch.maven.org/

6. In each OpenLMIS Service’s build.gradle, update the dependency version of the library to point to the
released version of the library (e.g. drop ‘SNAPSHOT")

3. In each service, branch for release. The branch name should start with ‘rel-’ followed by version of the service,
e.g. ‘rel-6.0.0’. Set the serviceVersion property in the gradle.properties file to the next version, which should
simply be the version without the SNAPSHOT suffix (e.g. if the serviceVersion was 6.0.0-SNAPSHOT, it should
be 6.0.0). Push this to GitHub, then log on to GitHub and create a release tagged with the same tag. Note that

1.7. Versioning and Releasing 193

https://oss.sonatype.org/
http://central.sonatype.org/pages/releasing-the-deployment.html
https://search.maven.org/
https://search.maven.org/

OpenLMIS Documentation, Release 3.0

GitHub release tags should start with the letter “v”, so ‘6.0.0’ would be tagged ‘v6.0.0’. Choose the release
branch to use as the Target. Also, when you create the version in GitHub check the “This is a pre-release”
checkbox if indeed that is true.

1. Do this for each service/UI module in the project, including the API services and the UI repos (note:

in those repos, the file is called project.properties, not gradle.properties). DON’T update the Reference
Distribution yet.

. Do we need a code freeze? We do not need a “code freeze” process. We are branching for release, and

everyone can keep committing further work on master as usual. Updates to master will be automatically
built and deployed at the Test site, but not the UAT site.

. Confirm that your release tags appear in GitHub and in Docker Hub: First, look under the Releases tab of

each repository, eg https://github.com/OpenLMIS/openlmis-requisition/releases. Next, look under Tags in
each Docker Hub repository. eg https://hub.docker.com/r/openlmis/requisition/tags/ . You’ll need to wait
for the Jenkins jobs to complete and be successful so give this a few minutes. Note: After tagging each
service, you may also want to change the serviceVersion again so that future commits are tagged on Docker
Hub with a different tag. For example, after releasing ‘6.0.0’ you may want to change the serviceVersion
to ‘6.0.1-SNAPSHOT". You need to coordinate with developers on your component to make sure everyone
is working on ‘master’ branch towards that same next release.

. Finally, on Jenkins, identify which build was the one that built and published to Docker/Maven the release.

Press the Keep the build forever button.

4. Update .env in openlmis-ref-distro with the release tag name chosen (e.g ‘3.3.0”)

1. For each of the services (and the Reference UI) deployed as the new version on DockerHub, update the

version in the .env file to the version you’re releasing.

2. Commit this change and tag the openlmis-ref-distro repo with the release being made. Note: There is

consideration underway about using a git branch to coordinate the ref-distro release, to perform this step
and the next one.

5. In order to publish the openlmis-ref-distro documentation to ReadTheDocs:

1. Edit collect-docs.py to change links to pull in specific version tags of README files. In that script,

change a line like urllib.urlretrieve ("https://raw.githubusercontent.com/
OpenLMIS/openlmis—referencedata/master/README.md", "developer—-docs/
referencedata.md") tourllib.urlretrieve ("https://raw.githubusercontent.
com/OpenLMIS/openlmis-referencedata/v3.0.0/README.md, "developer-docs/
referencedata.md")

. Edit index.rst and the ERD RST files under docs/source/components to change links to pull in

specific build version numbers of static API documentation and ERD zip files. In those files,
change a URL like http://build.openlmis.org/job/OpenlMIS-auth-pipeline/
job/master/lastSuccessfulBuild/artifact/api-definition.html to
http://build.openlmis.org/job/OpenLMIS—auth-pipeline/job/master/
362/artifact/api-definition.html and http://build.openlmis.org/job/
OpenLMIS—-auth-pipeline/job/master/lastSuccessfulBuild/artifact/
erd-auth.zip to http://build.openlmis.org/job/OpenLMIS—auth-pipeline/
job/master/323/artifact/erd-auth.zip

. To make your new version visible in the “version” dropdown on ReadTheDocs, it has to be set as “active”

in the admin settings on readthedocs (admin -> versions -> choose active versions). Once set active the
link is displayed on the documentation page (it is also possible to set default version).

6. Create a branch of openlmis-contract-tests named by the tag (e.g. v3.3.0) and update .env file to include newly

released components.

194

Chapter 1. Contents:

http://test.openlmis.org
http://uat.openlmis.org

OpenLMIS Documentation, Release 3.0

7. Update .env in openlmis-deployment for the Demo v3 deployment script with the release chosen which is at
https://github.com/OpenLMIS/openlmis-deployment/blob/master/deployment/demo_env/.env

1. Make sure to coordinate with the OpenLMIS Community Manager when redeploying to Demo v3.

2. For each of the services deployed as a the new version on DockerHub, update the version in the .env file
to the version you’re releasing.

3. Commit this change. (You do not need to tag this repo because it is only used by Jenkins, not external
users.)

8. Kick off the OpenLMIS-3.x-deploy-to-demo-v3 job on Jenkins

1. Confirm Demo v3 has each deployed service. e.g. for the auth service: https://demo-v3.openlmis.org/auth
check that the version is the one chosen.

9. Navigate to demo-v3.openlmis.org and ensure it works

10. Activate the released version on ReadTheDocs.io. To do so, log in on ReadTheDocs as a user with admin
permissions to the OpenLMIS project, go to versions and find the desired branch under “Activate a version”.
ReadTheDocs may take a couple of minutes to discover the branch after creating it. Click activate next to the
branch name once you find it (you can also use filtering to speed it up).

Once all these steps are completed and verified, the release process is complete. At this point you can conduct
communication tasks such as sharing the URL and Release Announcement to stakeholders. Congratulations!

1.7. Versioning and Releasing 195

OpenLMIS Documentation, Release 3.0

196 Chapter 1. Contents:

CHAPTER 2

Links:

¢ Project Management

Issue Tracking & Project Management

Wiki

¢ Communication

Slack
Forum

Youtube

* Development

GitHub

DockerHub (Published Docker Images)
OSS Sonatype (Maven Publishing)
Transifex (translations and localized text)
Code Review

Code Quality Analysis (SonarQube)

CI Server (Jenkins)

CD Server

UAT Server (Login: administrator/password)

197

https://openlmis.atlassian.net
https://openlmis.atlassian.net/wiki/spaces/OP
http://openlmis.slack.com
http://forum.openlmis.org
https://www.youtube.com/channel/UCivnkD7yEBhOw9FKFZHufGg/
https://github.com/openlmis
https://hub.docker.com/u/openlmis
https://oss.sonatype.org/#nexus-search;quick~org.openlmis
https://www.transifex.com/openlmis/public/
https://review.openlmis.org
http://sonar.openlmis.org
http://build.openlmis.org
http://test.openlmis.org
http://uat.openlmis.org

	Contents:
	Links:

