
1

Pharmasug 2021 - Paper AP-034

 FROM %LET TO %LOCAL; METHODS, USE, AND SCOPE

OF MACRO VARIABLES IN SAS PROGRAMMING
Jay Iyengar, Data Systems Consultants LLC, Oak Brook, IL

ABSTRACT

Macro variables are one of the powerful capabilities of the SAS system. Utilizing them makes
your SAS code more dynamic. There are multiple ways to define and reference macro variables in
your SAS code; from %LET and CALL SYMPUT to PROC SQL INTO. There are also several
kinds of macro variables, in terms of scope and other ways. Not every SAS programmer is
knowledgeable about the nuances of macro variables. In this paper, I explore the methods for
defining and using macro variables. I also discuss the nuances of macro variable scope, and the
kinds of macro variables from user-defined to automatic.

INTRODUCTION

Macro variables enable the SAS user to harness the power of the SAS Macro language. Macros
and macro variables are part of the BASE SAS package. As SAS programmers are familiar with
the DATA STEP, and its abilities to manipulate SAS variables on a data set, the SAS macro
language manipulates macro variables, and performs actions on them. The features and
processes of the SAS macro language to operate on macro variables are similar to the features
and processes of the DATA STEP to operate on SAS data set variables. By definition, a macro
variable is just a character or text string. However, the text string can consist of alpha numeric as
well as numeric values. The traditional or conventional way to define a macro variable is to use
%LET. However, there are some advantages to using CALL SYMPUT, and PROC SQL INTO: to
define macro variables.

THE MACRO PROCESSOR

When a SAS program is submitted, the code has to be compiled before it’s executed. During the
compilation phase, the code is sent to an area called the input stack. From the input stack, the
code is sent to the word scanner. In the word scanner the code is broken down into tokens.
Tokens are smaller units which fall into one of four categories; literals, numbers, names, or
special characters. Eventually, code is sent to the compiler. Here, SAS evaluates and checks the
code for correct syntax, and will issue warning or error messages to the log, if the code violates
syntax rules. This process is illustrated in Figure 1 below.

Figure 1. Flow of SAS code during the compilation phase.

INPUT STACK

WORD SCANNER

COMPILER

2

SAS macro language syntax contains characters which are tokens and macro triggers. The
primary characters which are macro triggers are % and &. When SAS macro language statements
are submitted and these triggers are encountered by the word scanner, the text is alternately sent
to the macro processor.

The macro processor evaluates the code, requests additional tokens if necessary to complete the
statements, and then performs some action. For example, if you create a macro variable using the
%LET statement, the code is broken into tokens by the word scanner, and then passed to the
macro processor. This process is illustrated in Figure 2 below.

Figure 2. Macro tokens and the macro processor.

The macro processor evaluates and then executes the code. When the macro processor
executes the %LET statement, the macro variable is created and stored in a symbol table, along
with other user-defined or automatic macro variables. This process is illustrated in Figure 3
below.

Figure 3. Macro processor and symbol table.

TYPES OF MACRO VARIABLES

The SAS macro facility provides two types of macro variables; automatic and user-defined.
Automatic macro variables are built in to the SAS system which can be utilized in your SAS code,
and generally have fixed values. User-defined macro variables are created and defined in SAS
code by the programmer or SAS user, using one of several constructs in the SAS macro facility.

INPUT STACK

%LET CAR = MAZDA;

WORD SCANNER

CAR
=
MAZDA

MACRO PROCESSOR

%LET

GLOBAL SYMBOL TABLE

SYSDATE
CAR

01JAN2021
MAZDA

MACRO PROCESSOR

3

AUTOMATIC VS. USER DEFINED MACRO VARIABLES

When a SAS session is invoked and initialized, automatic macro variables are created and
assigned values. Automatic macro variables provide information about your computing
environment, such as the date and time your SAS Session began, the operating system platform
SAS is running on, or the version of SAS that’s installed. Automatic macro variables are global in
scope, which means they’re always available during a session, and can be referenced anywhere
in your SAS code, either in open code, or inside a macro definition.

Although generally automatic macro variables contain values which cannot be modified during a
SAS session, some automatic macro variables contain values which change during the course of
a SAS session and can be reassigned. Examples and definitions of automatic macro variables are
provided below in Table 1.

Table 1. Automatic macro variables and definitions.

Most macro variables which programmers write, define and then reference in code are user-
defined macro variables. User-defined macro variables contain values that are characters or text
strings, and are defined in your SAS code, using any one of several SAS constructs. In contrast to
automatic macro variables, user-defined macro variables can be either global or local in scope.
Values for this type of macro variable can contain up to 65,534 characters.

For the purposes of this paper, user-defined macro variables will be known as macro variables.
These macro variables can be processed in the compilation phase, or during the execution phase
of SAS processing. Depending on the method chose, macro variable values can be defined with
leading and trailing blanks preserved, or have leading\trailing blanks removed.

%PUT

Any SAS user can verify macro variables and their current values which have been defined in a
SAS session. Whereas the PUT statement in a DATA STEP prints variables and values to the log,
%PUT prints macro variables and their values in the SAS log.

Using %PUT, you have the option of displaying a single macro variable, multiple macro variables
or a list of macro variables within a specific category. To validate a macro variable, call the macro
variable (with an ampersand before the macro variable name) in a %PUT statement. The example
in Figure 4 below demonstrates this.

Automatic
macro variable

Definition Values

SYSDATE The Date of the SAS Invocation (Date7. format) FIXED

SYSTIME The Time of the SAS Invocation. FIXED

SYSSCP The Operating System being used, WIN, HPUX, etc. FIXED

SYSVER The release of SAS that is being used. FIXED

SYSLAST The name of the most recently created SAS data set. VARIABLE

SYSPARM Contains text specified when SAS is invoked VARIABLE

SYSERR Return which indicates execution status of SAS code N/A

4

 1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 72
 73 %LET TEAM=TAMPA BAY BUCCANEERS;
 74 %PUT The Super Bowl Champions are the &TEAM;
 The Super Bowl Champions are the TAMPA BAY BUCCANEERS
 75

Figure 4. %PUT – displaying a single macro variable in the SAS log.

You can print a listing of macro variables within a specific category by specifying a keyword in the
%PUT statement. To see a listing of automatic macro variables, specify the _AUTOMATIC_
keyword in %PUT. As the example in Figure 5 demonstrates, SAS prints a list of automatic macro
variables with their current pre-set values.

73 %Put _Automatic_;
AUTOMATIC SYSDATE 03FEB21
AUTOMATIC SYSDATE9 03FEB2021
AUTOMATIC SYSDAY Wednesday
AUTOMATIC SYSJOBID 18882
AUTOMATIC SYSLAST WORK.VERSION_1612389170978
AUTOMATIC SYSPARM
AUTOMATIC SYSRC 0
AUTOMATIC SYSSCP LIN X64
AUTOMATIC SYSTIME 21:52
AUTOMATIC SYSVER 9.4

Figure 5. SAS log with example using %PUT _AUTOMATIC_.

You can specify the _USER_ keyword in the %PUT statement, to check and confirm user-defined
macro variables. Running %PUT _USER_, SAS will generate a list of user-defined macro
variables with their current values in the SAS log.

There are other %PUT options. By specifying %PUT _ALL_, SAS will print a listing of all macro
variables (automatic and user-defined) in the SAS log. In Figure 6 below is an example
containing an excerpt from the SAS log which displays a list of user-defined macro variables.

79 %PUT _USER_;
 GLOBAL CLIENTMACHINE 10.0.2.2
 GLOBAL COLOR SILVER
 GLOBAL COUNTRY_ORIGIN KOREA
 GLOBAL GRAPHINIT
 GLOBAL GRAPHTERM
 GLOBAL MAKE HYUNDAI
 GLOBAL MODEL ELANTRA
 GLOBAL STYLE SEDAN
 GLOBAL SYSCASINIT 0
 GLOBAL SYSSTREAMINGLOG true
 GLOBAL SYSUSERNAME sasdemo

Figure 6. %PUT listing in SAS log of user-defined macro variables.

5

Table 2 below displays the %PUT keywords which print different groups of macro variables to the
log.

%PUT KEYWORD DESCRIPTION

AUTOMATIC AUTOMATIC MACRO VARIABLES

USER USER DEFINED MACRO VARIABLES

ALL ALL MACRO VARIABLES

LOCAL LOCAL MACRO VARIABLES

GLOBAL GLOBAL MACRO VARIABLES

Table 2. %PUT keywords.

SCOPE OF MACRO VARIABLES AND SYMBOL TABLES

Scope of macro variables adds another dimension to the understanding and use of macro
variables. Scope determines where macro variables can be utilized within SAS coding structures
and the programming environment. Macro variables can have either global or local scope. Global
macro variables can be called and referenced at any location in SAS code; inside macro
definitions, in open code, in the program where they’re defined, and in other existing programs
which have been created. Local macro variables can only be called and resolved within a macro
program or macro definition. Most macro variables are global macro variables.

When macro variables are defined and processed, their saved and stored in a symbol table
respective to their scope. Global macro variables are saved in the Global Symbol Table. Similarly,
local macro variables are stored in a local symbol table. At the start of a SAS Session, a Global
Symbol Table is created containing automatic macro variables with their pre-set values. It exists
for the duration of the SAS session. The Global Symbol Table is deleted at the end of the session.
Local symbol tables pertain to a specific SAS macro. They’re created at the start of macro
execution, exist while the macro executes, and are deleted at the end of macro execution. By
default, macro parameters created in a %MACRO statement are local macro variables.

METHODS FOR DEFINING MACRO VARIABLES

The SAS macro facility within the BASE SAS package provides multiple ways to create macro
variables. Methods for creating macro variables include %LET, CALL SYMPUT or CALL
SYMPUTX, PROC SQL INTO clause, the %MACRO statement, or %GLOBAL and %LOCAL. By
default, %LET, CALL SYMPUT, and PROC SQL INTO clause define global macro variables.

%LET

The common method of creating a macro variable is the %LET statement. In open code, %LET
defines a global macro variable which can be called and resolved in any SAS program in a given
session. By default, %LET creates a macro variable which has leading and trailing blanks
removed from its value. Using %LET, a macro variable is created during the compilation phase of
SAS processing, before SAS code is executed.

6

Figure 7 below provides an example of creating and referencing a macro variable using %LET.

 73 %Let Make = Audi;
 74
 75 Proc Print Data=SASHELP.CARS;
 76 Var Make Model Type DriveTrain MSRP;
 77 Where Make="&Make";
 78 Title "Type, Drivetrain, and MSRP &Make Models";
 79 Run;

 NOTE: There were 19 observations read from the data set SASHELP.CARS.
 WHERE Make='Audi';
 NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.27 seconds
 cpu time 0.26 seconds

 81 Proc Means Data=SASHELP.CARS Mean;
 82 Var MSRP;
 83 Class DriveTrain;
 84 Where Make="&Make";
 85 Title1"Average Price for &Make Models";
 86 Title2"By Drivetrain";
 87 Run;

 NOTE: There were 19 observations read from the data set SASHELP.CARS.
 WHERE Make='Audi';
 NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.13 seconds
 cpu time 0.11 seconds

Figure 7. SAS log excerpt featuring %LET.

%STR VS. %NRSTR

Depending on the value of your macro variable, it may be necessary to use a macro quoting
function in a %LET statement to quote the value. Macro quoting functions mask specific
characters in macro variables, which enable the macro processor to interpret them as ordinary
text.

For example, you may have apostrophes in the value, which you don’t want interpreted as
quotation marks. In another example, you may have an ampersand (&), or a percent sign (%)
which SAS normally interprets as macro triggers, but you want interpreted as text.

The %STR macro quoting function quotes apostrophes, parentheses and other special characters
so they’re interpreted as constant text. However, if you additionally want to mask macro triggers,
such as % and &, then you need to use the %NRSTR function.

7

I’ve taken the example for %LET in Figure 7 and expanded it to include the use of macro quoting
functions in Figure 8 below. In Figure 8, I create two new macro variables, T1 and T2. T1 contains
an apostrophe. I used %STR to mask its value. Using %STR, you also need to place a percent
sign (%) before the character you’re quoting. Macro variable T2 contains a % sign and
respectively I use %NRSTR to mask its value.

%Let Make = Audi;
%Let Model = 5000S;

%Let T1 = %STR(Vonstuben%'s Audi Dealership);
%Let T2 = %NRSTR(Invoice AS A % OF Retail Price);

%Put MAKE=&MAKE T1=&T1 T2=&T2;

Proc Print Data=SASHELP.CARS;
 Var Make Model Type DriveTrain InvoiceP MSRP PCT_MSRP;
 Where Make="&Make" and Model="&Model";
 Title1 "&T1";
 Title2 "&T2";
 Footnote "&Make &Model";
Run;

Figure 8. %LET example with %STR and %NRSTR macro quoting functions.

CALL SYMPUT VS. CALL SYMPUTX

An alternate method of creating a macro variable is CALL SYMPUT. CALL SYMPUT must be
programmed in a DATA STEP. CALL SYMPUT is executed during DATA STEP processing. This
contrasts with %LET which is processed during SAS program compilation. By default, CALL
SYMPUT defines a global macro variable which can be referenced and called in any program in a
SAS session.

Commonly, CALL SYMPUT is defined in a DATA _NULL_ step, where no SAS data set is
created. By default, CALL SYMPUT preserves leading and trailing blanks in its macro variable
value. One limitation on macro variables with CALL SYMPUT is that macro variables cannot be
used in the same step they were defined in.

CALL SYMPUT allows macro variables to be based on a data set variable. Data set variables can
be specified for both the macro variable name and value, permitting the creation of multiple macro
variables. Figure 9 below provides an example of a DATA _NULL_ step with CALL SYMPUT.

DATA _NULL_;
 SET SDATASET1 NOBS=TOBS;

 CALL SYMPUT (‘TOT_OBS’, TOBS);
RUN;

Figure 9. DATA _NULL_ step with CALL SYMPUT.

8

CALL SYMPUTX has the same capabilities of CALL SYMPUT, for creation of macro variables
during data step execution. In addition, CALL SYMPUTX has the impact of removing leading and
trailing blanks from macro variable values. In Figure 10 below is an example SAS log excerpt
showing the use of CALL SYMPUTX.

 73 Data _Null_;
 74 Set CARS (Obs=1);
 75 Call Symputx ('Automake', Make);
 76 Run;

 NOTE: There were 1 observations read from the data set WORK.CARS.
 NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.01 seconds

 78 %Put &Automake;
 Acura
 85
 86 Proc Means Data=SASHELP.CARS Mean;
 87 Var MSRP;
 88 Class DriveTrain;
 89 Where Make="&Automake";
 90 Title1"Average Price for &Automake Models";
 91 Title2"By Drivetrain";
 92 Run;

 NOTE: There were 7 observations read from the data set SASHELP.CARS.
 WHERE Make='Acura ';
 NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.12 seconds
 cpu time 0.10 seconds

Figure 10. SAS log example using CALL SYMPUTX.

PROC SQL INTO CLAUSE

The PROC SQL INTO clause provides yet another method for creating macro variables. The
INTO clause defines a global macro variable with leading and trailing blanks preserved in its
value. The macro variable is defined and processed during the SAS compilation phase. Since the
INTO clause is coded on a SELECT statement, the macro variable can be based on a SAS
variable. Figure 11 provides an example of defining a macro variable using the PROC SQL INTO
clause.

9

 73 Proc Sql Inobs=1 Noprint;
 74 Select Distinct Make Into: Make
 75 From SASHELP.CARS;
 76 Quit;

 NOTE: PROCEDURE SQL used (Total process time):
 real time 0.00 seconds
 cpu time 0.01 seconds

 84 Proc Means Data=SASHELP.CARS Mean;
 85 Var MSRP;
 86 Class DriveTrain;
 87 Where Make="&Make";
 88 Title1"Average Price for &Make Models";
 89 Title2"By Drivetrain";
 90 Run;

 NOTE: There were 7 observations read from the data set SASHELP.CARS.
 WHERE Make='Acura ';
 NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.13 seconds
 cpu time 0.11 seconds

Figure 11. SAS log example of PROC SQL INTO clause.

In addition, using the SEPARATED BY clause, you can store a concatenated list of values from a
SAS variable separated by a delimiter in a macro variable. Figure 12 below provides an example
of the INTO clause with SEPARATED BY.

 Proc Sql;
 Select MSRP into : PRICELIST Separated By ‘ ‘
 From SASHELP.CARS;
 Quit;

Figure 12. PROC SQL INTO clause with SEPARATED BY.

Another capability of the PROC SQL into clause is the ability to create multiple macro variables in
a single SELECT statement.

OTHER METHODS

The %MACRO statement provides another way of defining and processing macro variables. The
%MACRO statement signals the beginning of a macro definition or SAS macro. On the %MACRO
statement, you can add macro parameters in parentheses, which are really macro variables.
Macro parameters are local macro variables, and are only available during execution of the
macro.

10

Macro parameters can be either keyword or positional parameters. For keyword parameters you
must specify the macro variable name and its value in the %MACRO statement or macro call.
Figure 13 below demonstrates the %MACRO statement with positional and keyword parameters
in parentheses to define the macro TEST.

%MACRO TEST (VARLIST, DSN=SASHELP.CARS, LIB1=WORK);

 TITLE “DATASET: &DSN WITH VARIABLES &VARLIST, IN LIBRARY &LIB1;
 %MEND TEST;

Figure 13. %MACRO statement with macro parameters.

The %GLOBAL and %LOCAL statements are another method which can be used to create macro
variables of a specific scope. The limitation is they cannot assign values as the other methods do.
They assign null values to macro variables. These statements can also be used to reset the
scope of macro variables.

Table 3 below provides a comparison of the available methods to create macro variables. For
each method, the table documents the scope of the macro variable, what phase of SAS
processing its created, and whether the values preserve or remove leading and trailing blanks.
There appear to be advantages and disadvantages to each method.

Method

Scope of Variable

Processing Leading\Trailing
Blanks

%LET GLOBAL COMPILATION REMOVED

CALL SYMPUT\SYMPUTX GLOBAL EXECUTION PRESERVED

PROC SQL INTO CLAUSE GLOBAL EXECUTION PRESERVED

%MACRO STATEMENT LOCAL COMPILATION N/A

%GLOBAL\%LOCAL GLOBAL\LOCAL COMPILATION N/A

Table 3. Comparison of methods for defining macro variables.

%GLOBAL AND %LOCAL

In open code, %LET defines a global macro variable, which can be utilized in any SAS program or
code during the session. However, in a macro definition, %LET creates a local macro variable,
which can only be used within the macro.

In the example below in Figure 14, %LET statements are wrapped inside a macro definition for
the macro AUTOS. The %LET statements define two macro variables, MAKE and MODEL.
%PUT is used to validate the scope of the macro variables. %PUT _LOCAL_ is used to print a
list of local macro variables to the log. The log below the code confirms that MAKE and MODEL
are local macro variables pertaining to the macro AUTOS.

11

CODE

%Macro Autos;

 %Let Make = Audi;
 %Let Model = 5000S;

 %Put Make=&Make Model=&Model;

 Proc Print Data=SASHELP.CARS;
 Var Make Model Type DriveTrain MSRP;
 Where Make="&Make" and Model="&Model";
 Title "Type, Drivetrain, and MSRP &Make &Models Models";
 Run;

 %Put _LOCAL_;

%Mend Autos;

%Autos

LOG

AUTOS MAKE Audi
AUTOS MODEL 5000S

Figure 14. SAS code and log with %LET inside macro definition.

It’s possible to change the scope of the macro variable created inside a macro definition. Using
the %GLOBAL statement, you can redefine the scope of a macro variable from local to global. In
this example, it changes the scope of the macro variable back to what it is by default.

In Figure 15, we revisit the same example we used for Figure 14, with the AUTOS macro. The
macro AUTOS is essentially the same. We have added the %GLOBAL statement for the macro
variables MAKE and MODEL. %GLOBAL creates MAKE and MODEL as global macro variables.

At the end we use %PUT _GLOBAL_ to print a list of global macro variables to the log. The log
below validates that the macro variables MAKE and MODEL are now global macro variables, and
displays their respective values.

SAS logs from the programs and examples in Figures 14-18 are provided at the end of the paper
in the appendices.

12

CODE

%Macro Autos;

 %Global Make Model;

 %Let Make = Audi;
 %Let Model = 5000S;

 %Put Make=&Make Model=&Model;

 Proc Print Data=SASHELP.CARS;
 Var Make Model Type DriveTrain MSRP;
 Where Make="&Make" and Model="Model";
 Title "Type, Drivetrain, and MSRP &Make &Model Models";
 Run;

 %Put _GLOBAL_;

%Mend Autos;

%Autos

LOG

GLOBAL MAKE Audi
GLOBAL MODEL 5000S

Figure 15. SAS code and log for macro AUTOS using %GLOBAL.

In open code, CALL SYMPUT creates a global macro variable. Inside a macro, however, CALL
SYMPUT will define a global macro variable as long as the macro doesn’t have parameters.
Creating a macro with parameters populates a local symbol table. Thus, if the macro has
parameters, CALL SYMPUT will define local macro variables.

In the example in Figure 16, I define the macro VEHICLE. Inside the macro, using CALL SYMPUT
in a DATA _NULL_ step, I’ve defined two macro variables, AUTOMAKE, and AUTOMODEL.
Notice that the macro doesn’t contain parameters.

At the end of the macro definition, there is a %PUT _GLOBAL_ statement which prints a list of
global macro variables to the SAS log. The excerpt from the log below contains the list of global
macro variables. The log confirms that AUTOMAKE and AUTOMODEL are global macro
variables.

13

CODE

%Macro Vehicle;

 Data _Null_;
 Set SASHELP.Cars (Obs=1);
 Call Symput('Automake', Make);
 Call Symput('Automodel', Model);
 Run;

 %Put Automake=&Automake;
 %Put Automodel=&Automodel;

 Proc Means Data=SASHELP.CARS Mean;
 Var MSRP;
 Class DriveTrain;
 Where Make="&Automake" and Model="&Automodel";
 Title1"Average Price for &Automake &Automodel Models";
 Title2"By Drivetrain";
 Run;

 %Put _Global_;

%Mend Vehicle;

%Vehicle

LOG

GLOBAL AUTOMAKE Acura
GLOBAL AUTOMODEL MDX

Figure 16. SAS code and log for macro VEHICLE with CALL SYMPUT.

Similar to %GLOBAL, you can use the %LOCAL statement to change the scope of a macro
variable from global to local. I can think of two examples where it would make sense to do this.
Suppose you have another macro containing macro variables with the same name, and calls to
this macro are nested inside your macro. With macro variable calls, you want to ensure global
macro variables don’t conflict with the local macro variables from the other macro. Take another
scenario where global macro variables with the same names already exist. Resetting the scope to
local prevents you from unintentionally overwriting the values of those variables.

In Figure 17, we revisit the VEHICLE macro example from Figure 16. A %LOCAL statement has
been added for macro variables AUTOMAKE and AUTOMODEL at the beginning of the macro. A
%PUT _LOCAL_ statement has been added at the end of the macro to print the values of any
local macro variables in the SAS log.

14

Below the code, the log confirms that AUTOMAKE and AUTOMODEL have been recreated as
local macro variables, along with their values. The macro variables are specific to the VEHICLE
macro. In this example, adding parameters to the macro would also create AUTOMAKE and
AUTOMODEL as local.

CODE

%Macro Vehicle;

 %Local Automake Automodel;

 Data _Null_;
 Set SASHELP.Cars (Obs=1);
 Call Symput('Automake', Make);
 Call Symput('Automodel', Model);
 Run;

 %Put Automake=&Automake;
 %Put Automodel=&Automodel;

 Proc Means Data=SASHELP.CARS Mean;
 Var MSRP;
 Class DriveTrain;
 Where Make="&Automake";
 Title1"Average Price for &Automake Models";
 Title2"By Drivetrain";
 Run;

 %Put _LOCAL_;

%Mend Vehicle;

%Vehicle

LOG

VEHICLE AUTOMAKE Acura
VEHICLE AUTOMODEL MDX

Figure 17. SAS code and log for macro VEHICLE using CALL SYMPUT with %LOCAL.

Similar to %LET and CALL SYMPUT, in open code PROC SQL INTO defines a global macro
variable. Inside a macro without parameters, PROC SQL INTO still defines a global macro
variable, the same scope as CALL SYMPUT. Using %LOCAL, you can redefine the scope of
macro variables created with PROC SQL INTO.

15

In Figure 18 is an example utilizing the PROC SQL INTO clause. This time the SAS code is
wrapped inside the AUTOMAKER macro. PROC SQL INTO creates the macro variables MAKE
and MODEL. %LOCAL defines MAKE and MODEL as local macro variables, and we use %PUT
LOCAL to print their values in the log. When we run the AUTOMAKER macro, MAKE and
MODEL are validated as local macro variables to the AUTOMAKER macro in the SAS log.

CODE

%Macro Automaker;

 %Local Make Model;

 Proc Sql Inobs=1 Noprint;
 Select Distinct Make, Model Into :Make, :Model
 From SASHELP.CARS;
 Quit;

 %PUT MAKE=&MAKE;
 %PUT MODEL=&MODEL;

 Proc Means Data=SASHELP.CARS Mean;
 Var MSRP;
 Class DriveTrain
 Where Make="&Make" and Model="&Model";
 Title1"Average Price for &Make &Model";
 Title2"By Drivetrain";
 Run;

 %Put _LOCAL_;

%Mend Automaker;

%Automaker

LOG

AUTOMAKER MAKE Acura
AUTOMAKER MODEL MDX

Figure 18. Using %LOCAL with PROC SQL INTO in AUTOMAKER macro.

COMPARISON

Table 4 below provides a summary comparison of the methods I’ve demonstrated and reviewed
based on scope, and on the place where it’s used, in open code or in a macro. Although all three
techniques create a global macro variable by default (in open code). However, the scope of the
macro variable inside a macro definition depends on the technique which is utilized.

16

Notice when used in a macro with parameters, all three SAS constructs create local macro
variables. This occurs because SAS populates a local symbol table. The table also documents
that the macro variables scope for each of methods can be reset using %LOCAL or %GLOBAL.
Although not included in the table, the %MACRO statement always defines local macro variables
for macro parameters. Macro parameters can be reset to global using %GLOBAL.

Method
Scope in
Open-Code

Scope inside
Macro

Scope Inside
Macro with
Parameters

Scope Inside Macro
with %LOCAL or
%GLOBAL

%LET GLOBAL LOCAL LOCAL GLOBAL

CALL SYMPUT\X GLOBAL GLOBAL LOCAL LOCAL

PROC SQL INTO GLOBAL GLOBAL LOCAL LOCAL

Table 4. Comparison of methods for defining macro variables according to scope.

CONCLUSION

Macro variables are the core and essential part of the SAS macro facility. Utilizing them makes
your code more portable, dynamic and efficient. Becoming familiar with the different methods to
create macro variables and their capabilities, makes your code more versatile, and enhances your
SAS skill set. Macro variable scope is determined by the method used, but also depends on
where the construct is placed in your code. Learning the consequences of the different methods
according to scope helps you build better programs which are more robust.

17

REFERENCES

Dominic, Littish. ”CALL SYMPUT-Global or Local” Pharmaceutical Users Software Exchange (PhUSE) 2009
Conference. https://www.lexjansen.com/phuse/2009/po/PO15.pdf

Horstman, Joshua M. “Using Macro Variable Lists to Create Dynamic Data-Driven Programs.” Midwest SAS
Users Group (MWSUG) 2019 Conference. https://www.lexjansen.com/mwsug/2019/SP/MWSUG-2019-
SP-053.pdf

Burlew, Michelle M. SAS Macro Programming Made Easy, Third Edition. 2014. Cary, NC. SAS Institute Inc.

Repole, Warren. SAS Macro Language Course Notes. 1998 Cary, NC. SAS Institute Inc.

ACKNOWLEDGMENTS

The author would like to thank Richard Allen, Pharmasug 2021 Operations Chair, Nancy Brucken,
Pharmasug 2021 Academic Chair, Ajay Gupta and Natalie Martinez, Advanced Programming Section Co-
chairs, and the Pharmasug Executive Committee and Conference Team for accepting my abstract and
paper and for organizing this virtual conference.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.

Contact the author at:

Jay Iyengar
Data Systems Consultants LLC
datasyscon@gmail.com
https://www.linkedin.com/in/datasysconsult/

Jay Iyengar is director of Data Systems Consultants LLC. He is a SAS consultant, trainer, and SAS
Certified Advanced Programmer. He’s been co-leader and organizer of the Chicago SAS Users Group
(WCSUG) for the last 5 years. He’s presented papers and training seminars at SAS Global Forum (SGF),
Midwest SAS Users Group (MWSUG), Wisconsin Illinois SAS Users Group (WIILSU), Northeast SAS Users
Group (NESUG), and Southeast SAS Users Group (SESUG) conferences. He has been using SAS since
1997. His industry experience includes International Trade, Health care, Database Marketing and
Educational Testing.

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

https://www.lexjansen.com/phuse/2009/po/PO15.pdf
https://www.lexjansen.com/mwsug/2019/SP/MWSUG-2019-SP-053.pdf
https://www.lexjansen.com/mwsug/2019/SP/MWSUG-2019-SP-053.pdf
mailto:datasyscon@gmail.com

18

APPENDIX I

 1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 SYMBOLGEN: Macro variable _SASWSTEMP_ resolves to
/folders/myfolders/.sasstudio/.images/b8196986-c174-4b45-9b7c-a68bcb2676f1
 SYMBOLGEN: Some characters in the above value which were subject to macro
quoting have been unquoted for printing.
 SYMBOLGEN: Macro variable GRAPHINIT resolves to
 72
 73 Options Symbolgen;
 74
 75 /****************************/
 76 /* %LET */
 77 /* OPEN CODE - GLOBAL */
 78 /* MACRO DEF - LOCAL */
 79 /* MACRO W/%GLOBAL - GLOBAL */
 80 /**/
 81 /****************************/
 82
 83 %Macro Autos;
 84 %Global Make Model;
 85 %Let Make = Audi;
 86 %Let Model = 5000S;
 87 %Put Make=&Make Model=&Model;
 88
 89 Proc Print Data=SASHELP.CARS;
 90 Var Make Model Type DriveTrain MSRP;
 91 Where Make="&Make";
 92 Title "Type, Drivetrain, and MSRP&Make Models";
 93 Run;
 94
 95 %Put _GLOBAL_;
 96 %Mend Autos;
 97
 98 %Autos
 SYMBOLGEN: Macro variable MAKE resolves to Audi
 SYMBOLGEN: Macro variable MODEL resolves to 5000S
 Make=Audi Model=5000S
 SYMBOLGEN: Macro variable MAKE resolves to Audi
 SYMBOLGEN: Macro variable MAKE resolves to Audi

NOTE: There were 19 observations read from the data set SASHELP.CARS.
 WHERE Make='Audi';

NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.23 seconds
 cpu time 0.23 seconds

19

 GLOBAL AUTOMAKE Acura
 GLOBAL AUTOMODEL MDX
 GLOBAL CLIENTMACHINE 10.0.2.2
 GLOBAL GRAPHINIT
 GLOBAL GRAPHTERM
 GLOBAL MAKE Audi
 GLOBAL MODEL 5000S
 GLOBAL OLDPREFS foldersmyfolders/.wepreferences
 GLOBAL OLDSNIPPETS foldersmyfolders/.mysnippets
 GLOBAL OLDTASKS foldersmyfolders/.mytasks
 GLOBAL SASWORKLOCATION "/tmp/SAS_workE71F00004EC0_localhost
.localdomain/SAS_workA74200004EC0_localhost. localdomain/"
 GLOBAL STUDIODIR foldersmyfolders/.sasstudio
 GLOBAL STUDIODIRNAME .sasstudio
 GLOBAL STUDIOPARENTDIR foldersmyfolders
 GLOBAL SYSCASINIT 0
 GLOBAL SYSSTREAMINGLOG true
 GLOBAL SYSUSERNAME sasdemo
 GLOBAL USERDIR foldersmyfolders
 GLOBAL _BASEURL http:localhost:10080SASStudio
 GLOBAL _CLIENTAPP 'SAS Studio'
 GLOBAL _CLIENTAPPABREV Studio
 GLOBAL _CLIENTAPPVERSION 3.8
 GLOBAL _CLIENTMACHINE 10.0.2.2
 GLOBAL _CLIENTMODE basic
 GLOBAL _CLIENTUSERID sasdemo
 GLOBAL _CLIENTUSERNAME sasdemo
 GLOBAL _CLIENTVERSION 3.8
 GLOBAL _EXECENV SASStudio
 GLOBAL _MACRO_FOUND 0
 GLOBAL _SASHOSTNAME localhost
 GLOBAL _SASPROGRAMFILE foldersmyfoldersMacrov_PaperExample1_Let.sas
 GLOBAL _SASPROGRAMFILEHOST localhost
 GLOBAL _SASSERVERNAME localhost
 GLOBAL _SASWORKINGDIR /opt/sasinside/SASConfig/Lev1/SASApp

GLOBAL _SASWSTEMP_
foldersmyfolders.sasstudio.imagesb8196986c1744b459b7ca68bcb2676f1

GLOBAL _SASWS_ foldersmyfolders
 99
 100
 101
 102
 103 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 SYMBOLGEN: Macro variable GRAPHTERM resolves to
 115

20

APPENDIX II

1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 SYMBOLGEN: Macro variable _SASWSTEMP_ resolves to
/folders/myfolders/.sasstudio/.images/29141e25-a5c9-4a70-9869-91218b513002

 SYMBOLGEN: Some characters in the above value which were subject to macro
quoting have been unquoted for printing.

 SYMBOLGEN: Macro variable GRAPHINIT resolves to
 72
 73 Options Symbolgen;
 74
 75 /**************************/
 76 /* Call Symput */
 77 /* */
 78 /* OPEN CODE - Global */
 79 /* MACRO DEF - Global */
 80 /* MACRO W/%LOCAL - Local */
 81 /* */
 82 /**************************/
 83
 84 %Macro Vehicle;
 85 %Local Automake Automodel;
 86
 87 Data _Null_;
 88 Set SASHELP.Cars (Obs=1);
 89 Call Symput('Automake', Make);
 90 Call Symput('Automodel', Model);
 91 Run;
 92
 93 %Put Automake=&Automake;
 94 %Put Automodel=&Automodel;
 95
 96 Proc Means Data=SASHELP.CARS Mean;
 97 Var MSRP;
 98 Class DriveTrain;
 99 Where Make="&Automake";
 100 Title1"Average Price for &Automake Models";
 101 Title2"By Drivetrain";
 102 Run;
 103
 104 %Put _LOCAL_;
 105
 106 %Mend Vehicle;
 107
 108 %Vehicle

 NOTE: There were 1 observations read from the data set SASHELP.CARS.
 NOTE: DATA statement used (Total process time):

21

 real time 0.00 seconds
 cpu time 0.00 seconds

 SYMBOLGEN: Macro variable AUTOMAKE resolves to Acura
 Automake=Acura
 SYMBOLGEN: Macro variable AUTOMODEL resolves to MDX
 Automodel= MDX
 SYMBOLGEN: Macro variable AUTOMAKE resolves to Acura
 SYMBOLGEN: Macro variable AUTOMAKE resolves to Acura
 NOTE: There were 7 observations read from the data set SASHELP.CARS.
 WHERE Make='Acura ';
 NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.18 seconds
 cpu time 0.17 seconds

 VEHICLE AUTOMAKE Acura
 VEHICLE AUTOMODEL MDX
 109
 110
 111
 112 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 SYMBOLGEN: Macro variable GRAPHTERM resolves to
 124

22

APPENDIX III

 1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 72
 73 Options Symbolgen;
 74
 75 /**************************/
 76 /* Proc SQL Into Clause */
 77 /* */
 78 /* OPEN CODE - Global */
 79 /* MACRO DEF - Global */
 80 /* MACRO W/%LOCAL - Local */
 81 /* */
 82 /**************************/
 83
 84 %Macro Automaker;
 85
 86 %Local Make Model;
 87
 88 Proc Sql Inobs=1 Noprint;
 89 Select Distinct Make, Model Into :Make, :Model
 90 From SASHELP.CARS;
 91 Quit;
 92
 93 %PUT MAKE=&MAKE;
 94 %PUT MODEL=&MODEL;
 95
 96 Proc Means Data=SASHELP.CARS Mean;
 97 Var MSRP;
 98 Class DriveTrain;
 99 Where Make="&Make";
 100 Title1"Average Price for &Make Models";
 101 Title2"By Drivetrain";
 102 Run;
 103
 104 %Put _LOCAL_;
 105
 106 %Mend Automaker;
 107
 108 %Automaker
 WARNING: Only 1 records were read from SASHELP.CARS due to INOBS= option.
 NOTE: PROCEDURE SQL used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

 SYMBOLGEN: Macro variable MAKE resolves to Acura
 MAKE=Acura
 SYMBOLGEN: Macro variable MODEL resolves to MDX
 MODEL= MDX

23

 SYMBOLGEN: Macro variable MAKE resolves to Acura
 SYMBOLGEN: Macro variable MAKE resolves to Acura
 NOTE: There were 7 observations read from the data set SASHELP.CARS.
 WHERE Make='Acura ';
 NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.18 seconds
 cpu time 0.18 seconds

 AUTOMAKER MAKE Acura
 AUTOMAKER MODEL MDX
 AUTOMAKER SQLEXITCODE 0
 AUTOMAKER SQLOBS 1
 AUTOMAKER SQLOOPS 17
 AUTOMAKER SQLRC 4
 AUTOMAKER SQLXOBS 0
 AUTOMAKER SQLXOPENERRS 0
 109
 110
 111
 112 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 SYMBOLGEN: Macro variable GRAPHTERM resolves to
 124

