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1 Introduction

Policymakers and families increasingly rely on achievement-based measures of school quality

to make high-stakes decisions. Families use school quality information to decide where to

enroll and, in some cases, where to live. School leaders and policy-makers use the same

sort of information when deciding whether to close, restructure, or expand schools. In

a parallel development, a growing number of school districts use centralized, algorithmic

assignment schemes to match students and schools. Boston, Denver, and New York City

(NYC), for instance, use deferred acceptance (DA) algorithms to assign students to seats.

Many of these centralized assignment systems incorporate random lottery numbers to break

ties between otherwise similar students. A growing econometric literature shows how the

resulting randomness in seat assignment identifies causal effects of school attendance.

This paper introduces two new empirical strategies that exploit randomness in centralized

school assignment to measure individual school quality. The key to both approaches is a

vector of school assignment propensity scores which characterize each student’s probability

of assignment to each school. In general, the propensity score for treatment assignment is the

probability of assignment conditional on a vector of confounding variables; Rosenbaum and

Rubin (1983) show that treatments that are independent of potential outcomes conditional

on potential confounders are also independent of potential outcomes conditional on the

propensity score. Abdulkadiroğlu et al. (2017, 2019) extend this result to matching markets

for schools, deriving formulas that quantify assignment risk in centrally assigning districts.

Empirical work exploiting school assignment propensity scores has so far mostly aimed to

capture causal effects of attendance in particular sectors, such as charter schools, rather than

individual schools. Estimates of such effects are useful for understanding average sectoral

differences, but high stakes decisions for households and policymakers typically hinge on

measures of individual school quality. Our aim here is to use school assignment propensity

scores to estimate individual school value-added. An important econometric challenge in this

context arises because many schools are under-subscribed, that is, they have fewer applicants

than seats. A conventional two-stage least squares (2SLS) model that uses school offers to

instrument individual school attendance is therefore under-identified. Moreover, many over-

subscribed schools face weak demand and, consequently, yield a weak first stage. This paper

tackles the econometric issues arising in such common school assignment scenarios.

Our first empirical strategy presumes that the only sources of selection bias in value-

added estimates are the applicant characteristics integral to school matching, such as where

to apply and the priority status that a school assigns its applicants. This amounts to

the presumption that compliance with conditionally randomized offers is independent of
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potential outcomes. We refer to this empirical strategy as a risk-controlled value-added

model (RC VAM). The conditional independence assumption underlying RC VAM echoes

that invoked in the Dale and Krueger (2002, 2014) and Mountjoy and Hickman (2020) studies

of the earnings consequences of elite college attendance. Importantly, however, centralized

school assignment facilitates validation of such conditional independence assumptions, a

feature not seen in previous applications of this sort of identification strategy.

Our second estimator uses randomized school offers as instrumental variables (IVs) for

school attended, conditional on the school assignment propensity score. Score conditioning

ensures the validity of offer dummies as instruments, but under-subscription makes a con-

ventional IV approach intractable. Our IV VAM approach solves the under-identification

problem by modeling school value-added as a function of a few mediating school characteris-

tics, estimated via the “many invalid instruments” framework of Kolesár et al. (2015). The

IV VAM estimates are then used to construct empirical Bayes posterior predictions of value-

added for individual schools. This approach builds on previous empirical Bayes strategies

that combine observational and quasi-experimental estimates (Angrist et al., 2016, 2017;

Chetty and Hendren, 2018; Hull, 2018) but which can be handicapped by computational

complexity and the need for a host of auxiliary modeling assumptions. We show here how

information on school characteristics and assignment risk can be used to simplify IV VAM

estimation in markets where schools are under-subscribed.

The tools developed here are illustrated by estimating school value-added in Denver and

NYC, two large urban districts that centralize public school assignment. Denver matches

students to schools in a unified enrollment scheme that employs a single random lottery

number as tie-breaker. The Denver school assignment propensity score is estimated using

recent theoretical results on school assignment risk under DA with lottery tie-breaking (Ab-

dulkadiroğlu et al., 2017). Admission offers to traditional NYC public schools are determined

by a match that combines lottery and non-lottery tie-breakers (the latter are relevant for

applicants to New York’s “screened schools”). NYC school assignment scores are therefore

estimated using the theoretical results on assignment risk in matching markets with mixed

multiple tie-breaking derived in Abdulkadiroğlu et al. (2019).

Estimates from both cities suggest that RC VAM does a remarkably good job of con-

trolling selection bias. Statistical tests that exploit quasi-experimental offer variation fail to

reject the key conditional independence assumption underlying this first approach. Perhaps

surprisingly, RC VAM appears to be reliable even for NYC high schools, where the lagged

achievement controls included in the RC VAM model differ from the SAT score we use as an

outcome. RC VAM estimates also beat conventional VAM estimates on mean-squared error

(MSE) grounds, with bias reductions more than offsetting the modestly increased variance
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from using narrower variation.

Because RC VAMs controlling for risk and lagged achievement appear to be virtually

unbiased, there’s little scope for IV VAM to improve upon them. We show, however, that IV

VAM reduces bias and MSE for VAMs estimated with fewer controls than those specified by

the RC procedure. IV VAM also boosts the accuracy of VAMs that rely on older measures

of lagged achievement for estimation. This scenario is inspired by the 2020 COVID-19 pan-

demic, when few school districts were able to test as originally scheduled. Our encouraging

results in this context suggest that IV VAM is likely to be useful in other situations where

information on lagged outcomes is dated or unavailable.

The remainder of the paper is organized as follows. Section 2 outlines a conceptual

framework for school value-added estimation and testing in districts that centralize school

assignment. Sections 3 and 4 describe our two new estimation strategies. Empirical results

are discussed in Section 5. Section 6 summarizes and points to directions for further work.

2 Econometric Framework

Our theoretical analysis adds to a burgeoning literature developing VAM methodology. Much

of this work is inspired by the pioneering Kane and Staiger (2008) study of teachers, which

applies empirical Bayes estimation to the study of teacher value-added. Key extensions

and VAM applications exploiting quasi-experimental variation include Chetty et al. (2014a)

for teachers and Deming (2014) and Angrist et al. (2017) for schools. Applications of an

empirical Bayes framework for value-added estimation to other settings include Chetty and

Hendren (2018), Hull (2018), and Abaluck et al. (2020). As in these previous studies, the

foundation of our approach is a causal model describing the effects of attendance at individual

schools on student outcomes. We next describe this setup.

2.1 Setting

Consider a population of N students, each attending one of J schools in a district. Let

Yij denote the potential outcome of student i when enrolled at school j. These potential

outcomes are described by a constant-effects model:

Yij = γj + εi, j ∈ {1, . . . , J}, (1)

where γj = E[Yij] and εi ≡ Yij −E[Yij]. For any two schools, j and k, the difference γj − γk
is the causal effect of attending j rather than k, that is, a comparison of school value-added.
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Equation (1) is a constant-effects VAM because the common residual, εi, implies that Yij−Yik
is the same for all students. We refer to εi as student i’s ability.

It is convenient to adopt a parameterization that measures value-added relative to the

average for the district. Let Dij denote an indicator equal to one if student i attends school

j. Observed outcomes Yi can then be written:

Yi = β0 +
J∑
j=1

βjDij + εi, (2)

where β0 = 1
J

∑J
j=1 γj and βj = γj − β0.

The value-added parameters in equation (2) describe the effect of randomly generated

changes in school enrollment on the dependent variable. Since school enrollment is not

randomly assigned, however, these causal parameters need not coincide with differences in

average student outcomes across schools. Schools that attract higher-ability students tend

to have better average outcomes, regardless of value-added. In the context of equation (2),

this selection bias manifests as correlation between Dij and εi. Consequently, a regression

of Yi on Dij need not coincide with the causal model, equation (2).

2.2 Centralized Assignment

Centralized school assignment schemes (“matches,” for short) provide a source of identifying

information that we use to overcome selection bias. Centralized matches ask students to

submit rank-ordered preferences over schools, while also granting potential applicants a pri-

ority at each school.1 Assignments are often made by a deferred acceptance (DA) algorithm

that takes preferences and priorities as inputs. Match-generated offers are also determined

by a tie-breaking variable, often randomly assigned, that distinguishes between students who

have the same preferences and priorities. DA matches output a single school assignment for

each student. Students may choose to enroll where matched, or enter a later less systematic

round producing negotiated assignments. With random tie-breaking, offers are randomly

assigned conditional on preferences and priorities. Because many students enroll where of-

fered, dummies indicating school offers can be used as instrumental variables for the school

enrollment dummies in equation (2).

Preferences and priorities are captured by a partial ordering �i of schools on student i’s

preference list, and by student i’s priority ρij at each school j. The vector ρi = (ρi1, ..., ρiJ)′

collects a student’s priorities at all schools. A student’s type, denoted θi, is the combination

1Priorities are non-stochastic tie-breakers. For example, many schools admit the siblings of currently
enrolled students before considering others.
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of preferences and priorities, that is, θi ≡ (�i, ρi). Let Zij denote an indicator equal to one

when the match offers student i a seat at school j, and collect these indicators in the vector

Zi = (Zi1, ..., ZiJ)′. The conditional random assignment of Zi is then summarized as follows:

Assumption CRA. Student ability is independent of school assignments conditional on

type: εi ⊥⊥ Zi | θi.

The maintained Assumption CRA suggests that we can estimate the causal effects of

school assignment by comparing the outcomes of students within strata defined by type. In

practice, however, we see nearly as many preference and priority combinations as there are

students in a match. Consequently, full type conditioning is impractical.

To solve the problem of a high-dimensional conditioning set, we pool students of different

types in a manner that preserves conditional independence of offers and potential outcomes.

Pooling relies on the school assignment propensity score, computation of which uses theoreti-

cal results in Abdulkadiroğlu et al. (2017, 2019). Student i’s propensity score for assignment

to school j is defined as:

pij ≡ Pr(Zij = 1|θi). (3)

The pij are school assignment rates determined by repeatedly running the assignment algo-

rithm, redrawing tie-breakers each time, while holding preferences and priorities fixed. The

vector pi = (pi1, ..., piJ)′ collects student i’s propensity scores for all schools.

As first shown by Rosenbaum and Rubin (1983), random assignment conditional on a

vector of controls implies conditional random assignment given the propensity score obtained

conditional on these controls. In our setup, this result can be stated as:

Lemma 1. Under Assumption CRA, student ability is independent of school assignments

conditional on assignment risk: εi ⊥⊥ Zi | pi.

In other words, where school assignment is random conditional on type, assignment is also

random conditional on the school assignment propensity score.

Why is this conditional independence property useful? As in a complex stratified ran-

domized trial, a signal feature of the school assignment setting is that the propensity score is

a coarse function of observed conditioning variables. In particular, while type varies widely,

assignment scores are determined by a few school-level cutoffs. In view of this, researchers

have long used propensity-score conditioning to control for confounding variables in esti-

mates of causal effects. Score control is especially straightforward in a linear constant-effects

model like equation (2). In this case, it’s enough to subtract scores from offer dummies.

Specifically, we have the following corollary to Lemma 1:
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Corollary 1. Under Assumption CRA, student ability is orthogonal to risk-adjusted school

assignments: E[εi(Zij − pij)] = 0 for each j.

By virtue of the Corollary, the set of risk-adjusted offer dummies, Zij − pij, can be used

as instruments for the set of enrollment dummies, Dij, in equation (2). The reasoning that

yields this result parallels that employed in the partially linear framework pioneered by

Robinson (1988), applied here to IV. A two-stage least squares (2SLS) procedure that uses

offers as instruments for school enrollment while controlling for the corresponding propensity

scores is equivalent to a 2SLS estimator that uses residuals from a regression of offers on

school assignment scores as instruments. Since pij = E[Zij | θi], the auxiliary regression

residual in this case is Zij− pij. The appendix fleshes out the details behind this argument.2

2.3 The Under-subscription Challenge

Abdulkadiroğlu et al. (2017, 2019) use orthogonality conditions analogous to those described

by Corollary 1 to estimate effects of attending groups of schools seen as belonging to a

particular sector, such as charter schools. This work treats assignment to a given sector as

an instrument for sector enrollment, controlling for the relevant assignment propensity score.

When the sector of interest consists of charter schools, for example, risk adjustment is based

on the probability of being assigned a seat at any charter school participating in the match.

Use of centralized assignment to estimate individual school value-added is more challeng-

ing because many schools are under-subscribed in the sense of having more available seats

than applicants who rank the school highly. Under-subscription of an entire sector is much

less likely than individual school under-subscription. The propensity score for an under-

subscribed school equals either zero or one for all applicants, depending on how each appli-

cant ranks the school. Consequently, Zij = pij for such schools, implying risk-adjusted offers

are degenerate. With under-subscription a causal VAM model like equation (2) is under-

identified because the number of endogenous variables exceeds the number of non-degenerate

instruments. The next two sections introduce strategies for addressing this problem.

3 Risk-Controlled VAM

Our first approach to estimate value-added uses propensity score conditioning to eliminate

selection bias. This strategy is predicated on the assumption that conditional on applicant

type and potentially a vector of other observed pre-assignment covariates, Xi, school choice

2Other proofs appear in the appendix as well. Borusyak and Hull (2020) discuss this kind of instrument
adjustment in a broad class of research designs.
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is independent of potential outcomes and is therefore as good as randomized. We think of

the Xi as conventional VAM controls; these include, for example, lagged test scores. To

formalize this identifying assumption, let Di = (Di1, ..., DiJ)′ be a vector collecting the J

school enrollment indicators. We then have the conditional independence assumption:

Assumption CIA. Student ability is independent of school enrollment conditional on stu-

dent characteristics and assignment risk: εi ⊥⊥ Di | (pi, Xi).

Our risk-controlled (RC) VAM estimator amounts to a regression on school attendance dum-

mies with controls for pi and Xi.

To motivate this approach, note first that because school assignment offers are randomly

assigned conditional on type, it must be true that (εi, Xi) ⊥⊥ Zi | θi. Hence, Lemma 1 can

be modified to say:

εi ⊥⊥ Zi | (pi, Xi). (4)

Assumption CIA therefore follows from Lemma 1 in a scenario in which all match partic-

ipants accept any offer yielded by the match. More generally, Assumption CIA overcomes

the identification challenge raised by under-subscription by requiring that compliance with

conditionally randomized school assignment offers be as-good-as-randomized conditional on

applicant type and covariates. Conventional VAM estimates invoke a stronger version of CIA

by requiring conditional independence to hold conditional on covariates alone. Our desire to

nest the conventional setup motivates inclusion of Xi in the RC VAM conditioning set.

The nature of Assumption CIA is illuminated by showing it to be a central-assignment

analog of the Dale and Krueger (2002, 2014) identification strategy for the returns to college

selectivity. The Dale and Krueger approach assumes that college enrollment decisions are

made independently of potential outcomes conditional on student application choices and

college admission offers. In particular, these studies argue that application choices and ad-

mission results are likely to capture stable and systematic features of applicants’ preferences

and qualifications, while subsequent offer take-up decisions reflect idiosyncratic variation

unrelated to potential outcomes.3 College application choices are a decentralized analog of

the preference component of applicant type in a centralized match, while admission offer

take-up is analogous to offer compliance.

This analogy suggests a close connection between the RC VAM and Dale and Krueger

identification strategies, a relationship formalized in the following result:

3Mountjoy and Hickman (2020) apply this strategy to estimate effects of college selectivity using admin-
istrative data from Texas. Abdulkadiroğlu et al. (2020) use a similar strategy to identify the determinants
of parental preferences for NYC schools.
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Lemma 2. Given (εi, Xi) ⊥⊥ Zi | θi, Assumption CIA is implied by conditional independence

of student ability and enrollment given student characteristics, assignment risk, and school

assignments: εi ⊥⊥ Di | (pi, Xi, Zi) =⇒ εi ⊥⊥ Di | (pi, Xi).

At first blush, the Dale and Krueger strategy includes an extra set of conditioning variables:

the admissions offers, Zi. Lemma 2 shows, however, that our CIA assumption follows from

an extended conditional independence assumption that adds school assignment offers to

the conditioning set, so that realized-offer conditioning is unnecessary. Lemma 2 therefore

translates Dale-and-Krueger reasoning from the decentralized multi-offer college admissions

world to a centralized single-offer setting.

We implement RC VAM using ordinary least squares (OLS) regressions of the form:

Yi = α0 +
∑
j

αjDij +X ′iΓ + g(pi) + ηi, (5)

where Xi is a conventional VAM control vector and the function g(pi) parameterizes control

for assignment risk. This function includes linear terms in the elements of pi and a set of

dummy variables indicating when each pij equals zero. In a model with Zi on the right-hand

side, control for a linear function of pi is equivalent to estimation with dummies for all points

of support in the assignment score distribution.4 We’re interested in the effects of school

enrollment rather than offer effects, however. Dummies for zero risk therefore amount to an

additional nonlinear control for applicant type. Control for zero-risk dummies is motivated

by the fact that those with zero risk of an offer at j are almost all non-applicants to j. In

the spirit of Dale and Krueger (2002), application behavior seems likely to be a potential

source of omitted variables bias in cross-school comparisons. This parsimonious specification

of g(pi) has 2J terms in a district with J schools.

Testing the CIA with Centralized Assignment

The αj in (5) coincide with causal value-added parameters βj when the controls in equation

(5) are sufficient to eliminate selection bias. This leads to the following null hypothesis for

the validity of RC VAM and other OLS VAM estimators:

H0 : αj = βj; j ∈ {1, . . . , J}. (6)

A simple example shows how randomized offers can be used to test H0. Suppose J = 2

and normalize intercepts so that β1 and α1 measure causal and OLS value-added of school

4This follows from multivariate regression algebra and the fact that pi = E[Zi|θi] = E[Zi|pi].
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1 relative to school 2. Suppose also that every student faces the same risk of assignment to

school 1, so that pi1 is constant, and omit the additional VAM controls Xi. Under H0, the

OLS residual ηi is then equal to ability, εi. Corollary 1 therefore implies that instrument Zi1

is mean-independent of ηi:

E[ηi|Zi1 = 1]− E[ηi|Zi1 = 0] = 0. (7)

Substituting for ηi in this expression using a simplified (5) yields:

(E[Yi|Zi1 = 1]− α1E[Di1|Zi1 = 1])− (E[Yi|Zi1 = 0]− α1E[Di1|Zi1 = 0]) = 0. (8)

Rearranging and using the fact that α1 = E[Yi|Di1 = 1]− E[Yi|Di1 = 0], we have:

E[Yi|Zi1 = 1]− E[Yi|Zi1 = 0]

E[Di1|Zi1 = 1]− E[Di1|Zi1 = 0]
= E[Yi|Di1 = 1]− E[Yi|Di1 = 0]. (9)

The left side of this expression is an IV estimand using Zi1 to instrument Di1. A test of H0

that checks orthogonality of ηi and Zi1 is therefore a Hausman (1978) test for equality of

school 1 enrollment effects estimated by IV and OLS.

To extend this test to the general version of equation (5), note that even when L < J ,

H0 implies ηi is orthogonal to all risk-adjusted school offers. This orthogonality yields L

restrictions (one for each oversubscribed school) of the form:

E[ηi(Zi` − pi`)] = 0; ` ∈ {1, . . . , L}. (10)

The restrictions in (10) are evaluated using the regression version of the Sargan test for

instrument-error orthogonality.5 Let η̂i denote the RC VAM residuals generated by OLS

estimation of (5). The restrictions in (10) are tested by asking whether τ1 = · · · = τL = 0 in

the regression equation:

η̂i = τ0 +
L∑
`=1

τ`Zi` +
L∑
`=1

µ`pi` +X ′i∆ + ξi, (11)

where ` indexes dummies Zi` indicating offers at L < J over-subscribed schools. The propen-

sity score controls on the right hand side ensure that this procedure tests risk-adjusted

offer-residual orthogonality. The covariates Xi are included to increase statistical precision.

The omnibus specification test based on (11) admits a useful decomposition that distin-

5Detailed in, e.g., Hausman (1983).
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guishes VAM bias on average from the bias of estimates for specific schools. Introduced by

Angrist et al. (2016), this decomposition builds on the following forecast regression:

βj = ϕαj + νj, (12)

where νj is defined so as to be uncorrelated with αj in the population of schools. Parameter

ϕ is a forecast coefficient summarizing the degree to which RC VAM parameters predict

causal value-added. Forecast residuals, νj, have variance denoted σ2
ν . In the absence of

selection bias, αj = βj, so ϕ = 1 and σ2
ν = 0. More generally, ϕ summarizes the reliability of

RC VAM predictions. At the same time, σ2
ν characterizes idiosyncratic school-specific biases

that average to zero over schools.

Assuming the residual ξi is conditionally homoskedastic, the omnibus test statistic eval-

uating τ1 = · · · = τL = 0 in equation (11) can be written as the sum of a test of forecast bias

and a test of idiosyncratic bias. The omnibus test statistic is:

T̂ =
(Y −Dα̂)′PZ⊥(Y −Dα̂)

σ̂2
ξ

. (13)

Appendix A.3 shows that this can be written:

T̂ =
(ϕ̂− 1)2

σ̂2
ξ (α̂

′D′PZ⊥Dα̂)−1
+

(Y −Dα̂ϕ̂)′PZ⊥(Y −Dα̂ϕ̂)

σ̂2
ξ

, (14)

where Y is a vector collecting observations of Yi, D is a matrix collecting observations of

Di, α̂ is a vector collecting the OLS estimates of αj, PZ⊥ is the projection matrix for the set

of oversubscribed assignments Z after partialling out controls, σ̂2
ξ = 1

N

∑
i ξ̂

2
i estimates the

variance of ξi, and ϕ̂ = (α̂′D′PZ⊥Dα̂)−1(α̂′D′PZ⊥Y ) is the 2SLS estimate of the forecast co-

efficient computed by using oversubscribed offer dummies to instrument RC VAM estimates

of value-added at the school attended by student i.6

The first term in the decomposition of T̂ is a Wald statistic testing ϕ = 1 (the denomina-

tor of this term estimates the variance of ϕ̂). The second term is the Sargan (1958) statistic

testing overidentifying restrictions induced by the 2SLS procedure generating ϕ̂. The dis-

tinction between these tests is illuminated by substituting the forecast regression, (12), into

the causal model, (2), to obtain

Yi = β0 + ϕαj(i) + εi + νj(i), (15)

6Specifically, PZ⊥ = Z⊥(Z ′⊥Z⊥)−1Z ′⊥, where Z⊥ = Z − C(C ′C)−1C ′Z, with matrix C collecting obser-
vations on risk controls and covariates on the right-hand side of (11). In large samples, the elements of Z⊥
coincide with risk-adjusted offers, Zij − pij .
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where αj(i) =
∑

j Dijαj is the OLS VAM coefficient for student i’s school and νj(i) =
∑

j Dijνj

is the corresponding forecast residual. By Corollary 1, risk-adjusted school offers, Zij−pij, are

orthogonal to εi. Under H0, we also have νj(i) = 0. Together, these restrictions imply that the

Zi`− pi` are valid instruments for αj(i) in equation (15). The first term of equation (14) asks

whether the estimated forecast coefficient yielded by these instruments is indeed statistically

indistinguishable from one. Paralleling a Sargan test of instrument-error orthogonality, the

second term asks whether the individual IV estimates computed using one instrument at a

time are statistically indistinguishable from one another (whether they’re equal to one or

not). Maintaining orthogonality of the instruments with εi, this amounts to a test of νj(i) = 0

since νj(i) 6= 0 typically makes one-at-a-time IV estimates diverge.7

4 IV VAM in Under-identified Models

Centralized assignment generates random variation in school offers that identify key features

of the value-added distribution even when OLS VAM estimates are biased. Our IV VAM

estimator exploits this variation by integrating a low-dimensional model of the determinants

of school quality with RC VAM or other OLS estimates. Because systematic variation in

quality is presumed to flow through only a few school characteristics, this model is identified

even in the face of widespread under-subscription. The resulting parameter estimates can

then be used to predict value-added for individual schools. As in Angrist et al. (2017), these

predictions can be seen as optimally weighted combinations of OLS estimates and IV reduced

forms. We improve on earlier efforts in this spirit by combining RC VAM and IV estimates

in a computationally attractive linear framework.

The foundations of this framework are first-stage and reduced form regressions of school

attendance and outcomes on risk-adjusted offers for admission to oversubscribed schools:

Dij = φj +
L∑
`=1

π`j(Zi` − pi`) + uij, j ∈ {1, ..., J}, (16)

Yi = κ+
L∑
`=1

ρ`(Zi` − pi`) + ωi. (17)

The reduced form is obtained by substituting the first stages (16) into the causal model, (2).

It’s convenient to array the π`j coefficients in equation (16) in the L × J matrix Π, and to

collect the ρ` coefficients in equation (17) in the L×1 vector ρ. We then have ρ = Πβ, where

7The omnibus test and associated decomposition detailed here apply to OLS estimates other than RC
VAM, including conventional VAM estimates that control for Xi ignoring assignment risk.
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β = (β1, ..., βJ)′. When L = J , school value-added is identified by solving for β = Π−1ρ.

When L < J , because some schools are under-subscribed, the first stage and reduced form

alone are insufficient to identify the causal effects of interest.

This identification problem is tackled here by modeling the relationship between school

quality and a lower-dimensional set of mediating variables. Specifically, the school-level

forecast regression is extended to be:

βj = M ′
jϕ+ νj, (18)

where Mj = (Mj1, ...,MjK)′ is a K × 1 vector of school characteristics, normalized to have

mean zero across schools, with K typically much smaller than L. These characteristics may

include RC VAM or conventional OLS VAM parameters, as well as other school character-

istics like indicators for school sector. The forecast coefficient ϕ (now a vector) captures the

relationship between these school covariates and causal value-added, βj. The forecast resid-

ual, νj, is defined to be mean zero and uncorrelated with Mj across schools. Substituting

(18) into (2) yields a generalization of equation (15):

Yi = β0 +M ′
j(i)ϕ+ εi + νj(i), (19)

where Mj(i) =
∑

j DijMj is the vector of mediators associated with student i’s enrolled school

and νj(i) =
∑

j Dijνj is the associated forecast residual.

Our IV VAM procedure estimates ϕ using risk-adjusted school offers as instruments for

Mj(i) in equation (19). This extends the testing procedure in Section 3 to allow for multiple

mediators in Mj(i) rather than RC VAM coefficients alone. Moreover, the forecast regression

is no longer assumed to fit causal value-added perfectly, that is, νj 6= 0. This scenario,

which arises when Mj fails to explain all of the variation in school value-added, leads to a

violation of the relevant exclusion restrictions even when Assumption CRA holds. To see

this, substitute the first stage equation, (16), into the definition of νj(i) in (19) to obtain:

Yi = β̃0 +M ′
j(i)ϕ+

L∑
`=1

δ`(Zi` − pi`) + ε̃i, (20)

where β̃0 = β0 +
∑

j νjφj, ε̃i = εi +
∑

j νjuij, and δ` =
∑

j π`jνj. The δ` parameters in this

expression capture effects of the instruments operating through channels other than Mj(i).

The resulting exclusion restriction violations emerge whenever offers shift students across

schools with different forecast residuals.

We account for potential exclusion violations by adapting the Kolesár et al. (2015) frame-
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work for models with many invalid instruments. This framework allows violations of the

exclusion restriction, but requires these violations to average out in an asymptotic sequence

that increases the number of instruments in proportion to the sample size. To see how this

strategy applies here, it’s useful to write the first stages for the mediating variables as:

Mj(i)k = ψ0k +
L∑
`=1

ψ`k(Zi` − pi`) + υik, k ∈ {1, ..., K}, (21)

with ψ0k =
∑

jMjkφj, υik =
∑

jMjkuij, and ψ`k =
∑

jMjkπ`j. The ψ`k characterize school

offer effects on school characteristics, filtered through the effects of offers on enrollment as

parameterized by π`j.

With this notation in hand, the second key identifying assumption for IV VAM (after

Assumption CRA) can be stated as follows:

Assumption MIV. Exclusion violations are orthogonal to first stage fitted values:

E

[(
L∑
`=1

δ`(Zi` − pi`)

)(
L∑
`=1

ψ`k(Zi` − pi`)

)]
= 0, k ∈ {1, ..., K}.

This assumption requires the first stage predicted values for school characteristics generated

by (21) to be uncorrelated with the terms generating exclusion violations in (20).

When the first stage and reduced form parameters are viewed as fixed, Assumption

MIV holds only in a scenario in which the δ` and ψ`k coefficients are arranged so that

exclusion violations fortuitously average to zero in the data at hand.8 In a random coefficients

framework, however, school-specific features Mj, νj and {π`j}L`=1 are seen as draws from a

joint distribution of school characteristics, forecast residuals, and offer compliance behavior.

In this framework (similar to that used in Angrist et al. 2017), a sufficient condition for

Assumption MIV can be formalized as:

Lemma 3. Let ν denote the J × 1-vector of forecast residuals, νj; let M denote the J ×K
matrix of school characteristics, Mj; let Z̃ denote the N × L matrix of risk-adjusted offers,

Zi` − pi`. Suppose that Mj, νj, and {π`j}L`=1 are drawn from a joint distribution of school

features, so that conditional expectations involving these variables are well-defined, and that

E[ν | Π,M, Z̃] = 0. Then Assumption MIV holds.

This result requires that the unexplained component of school value-added be unrelated

to offer compliance patterns across schools. When Mj includes characteristics strongly pre-

8In this case, the only random variables relevant to Assumption MIV are the instruments. Suppose, for
example, there are two oversubscribed schools with V ar(Zi1 − pi1) = V ar(Zi2 − pi2) and the (δ`, ψ`) are
fixed. Then Assumption MIV requires −(δ1ψ1 + δ2ψ2)/(δ1ψ2 + δ2ψ1) = Corr(Zi1 − pi1, Zi2 − pi2).
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dictive of school quality, νj can be thought of as capturing the bias in these predictions. MIV

is then satisfied when bias and offer compliance rates are uncorrelated, but fails when stu-

dents are more likely to accept offers at higher value-added schools (conditional on Mj and

Z̃). It’s also worth noting that when Mj includes the RC VAM coefficient αj, Assumption

MIV is strictly weaker than Assumption CIA: the latter requires νj = 0 for all schools, while

the former is compatible with non-zero νj provided these idiosyncratic bias components are

conditionally mean-independent of Π.

Increasing the number of instruments increases the plausibility of Assumption MIV,

though at the risk of increased bias in 2SLS estimates of ϕ. In view of possible bias in

heavily over-identified models, Kolesár et al. (2015) propose a bias-corrected 2SLS estimator

(B2SLS) that is consistent in a many-instrument asymptotic sequence similar to that used in

Bekker (1994). Appendix A.5 adapts the assumptions of Kolesár et al. (2015) to our setting

and shows that the B2SLS estimator is consistent for ϕ under Assumptions CRA and MIV

in a many-instrument asymptotic sequence (here, this means increasing L in proportion to

N). The appendix also derives a consistent estimator of the forecast residual variance, σ2
ν ,

under an additional homoskedasticity assumption. In practice, B2SLS and 2SLS estimates

of the parameters of interest here are virtually indistinguishable.

Empirical Bayes Posterior Predictions

In addition to characterizing the distribution of school quality, IV VAM estimates of ϕ and σ2
ν

can be used to produce value-added predictions for individual schools. In contrast with RC

VAM, however, which generates individual school VAM estimates directly, IV VAM requires

an extra step. This step, sketched here (with proofs in the appendix), computes empirical

Bayes posterior means from estimates of ρ, Π, ϕ, and σ2
ν .

Consider the minimum mean squared error (MSE) predictor of β as a function of OLS

estimates of reduced form offer effects ρ̂ in equation (17), conditional on M , Π, and Z̃:

β∗ = arg min
b(·)

E
[
(b(ρ̂)− β)′(b(ρ̂)− β)|Π,M, Z̃

]
. (22)

As always, MSE is minimized by a conditional expectation function; in this case β∗ = E[β |
ρ̂,Π,M, Z̃]. The following result, proved in Appendix A.6, characterizes this function when

reduced form estimates and forecast residuals are both Normally distributed:

Proposition 1. Suppose ρ̂|(ρ,Π,M, Z̃) ∼ N(ρ,Σ) and ν|(Π,M, Z̃) ∼ N(0, σ2
νI). Then:

β∗ = Ωρ̂+ (I − ΩΠ)Mϕ, (23)
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where Ω = Π′(ΠΠ′ + Σ/σ2
ν)
−1.

Equation (23) defines a set of hybrid value-added predictions determined by a linear

combination of reduced-form offer effects and value-added as predicted by the forecast re-

gression. Given the assumptions invoked in the proposition, the hybrid value-add vector β∗

can be interpreted as the posterior mean of β given a prior based on (M,Π, Z̃), updated

with estimates of ρ̂. Plugging estimates of ϕ, σ2
ν , Π, Σ, and M into equation (23) yields

an empirical Bayes posterior mean β̂∗. These IV VAM predictions generalize the empirical

Bayes shrinkage estimators commonly used to reduce MSE in noisy OLS estimates of VAM

(as in, e.g., Kane et al. 2008 and Chetty et al. 2014a for teachers).9

Proposition 1 generates empirical Bayes posterior VAM estimates for schools under

weaker assumptions than deployed for this purpose in Angrist et al. (2017), which requires

all school-specific parameters in the underlying random coefficients model to be Normally

distributed. The first assumption in Proposition 1, that the reduced form estimates are

conditionally normally distributed, can be justified by an asymptotic approximation to the

distribution of ρ̂ or by Normality of the error term ωi in equation (17). Note also that β∗ is

the best linear predictor of β even when the νj are non-Normal:

Corollary 2. Suppose ρ̂|(ρ,Π,M, Z̃) ∼ N(ρ,Σ), E[ν | Π,M, Z̃] = 0, and V ar(ν|Π,M, Z̃) =

σ2
νI. Then the β∗ in equation (23) solves (22) in the class of linear predictors of the form

b0 +B1ρ̂, where b0 is a J × 1 vector of constants and B1 is a J × L coefficient matrix.

This follows from the fact that Normality of the reduced-form estimates and conditional

homoskedasticity of forecast residuals imply that β∗ and the regression of β on ρ̂ coincide.

The formula for Ω reveals that when M is a vector of unbiased OLS VAM coefficients

α, such that ϕ = 1 and σ2
ν = 0, the posterior β∗ puts no weight on the reduced-form

estimates: β∗ = Mϕ = α. Appendix A.6 extends this formula to allow for sampling vari-

ance in the OLS estimates, α̂j, a generalization is used in the empirical work. When α̂j is

unbiased, the posterior again puts no weight on reduced-form estimates, simplifying to a

conventional empirical Bayes shrinkage estimator of the form β̂∗j = λjα̂j.
10 The appendix

also shows that when L = J , so that all schools are oversubscribed, the posterior β̂∗ is

a weighted average of IV estimates Π̂−1ρ̂ and the forecast regression fitted value Mϕ̂. In

general, the hybrid posterior combines the quasi-experimental information generated by ran-

9The logic here follows Morris (1983). Estimates of Π and Σ can be obtained by OLS estimation of
equations (16) and (17).

10This result requires homoskedasticity of the underlying error terms, which implies that OLS is the
efficient linear estimator of β when it is unbiased. The appendix provides more general formulas allowing
for heteroskedasticity, correlation in the sampling error of α̂j across schools, and estimation error in the first
stage matrix Π.
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domized school assignment with a value-added forecast based on OLS estimates and other

school characteristics, weighted to account for estimation and forecast errors.

5 Quantifying the Quality of Public Schools

The utility of RC VAM and IV VAM is demonstrated using data from the Denver and NYC

public school districts. The Denver sample updates the extract analyzed by Abdulkadiroğlu

et al. (2017), adding five new applicant cohorts. This sample includes students applying for

sixth-grade seats at any Denver Public Schools (DPS) middle school between the 2012-2013

and 2018-2019 school years. Match data include applicant preferences, priorities, and the

assignments generated by the match. We also have data on school enrollment, student demo-

graphic characteristics, and scores on the Colorado Student Assessment Program (CSAP)

and Colorado Measures of Academic Success (CMAS) state achievement tests. The data

appendix for Abdulkadiroğlu et al. (2017) explains how these files are processed.

The NYC sample covers sixth grade applicants to NYC middle schools, applying for the

2016-2017 through 2018-2019 school years, and ninth grade applicants to NYC high schools,

applying for 2012-2013 through 2014-2015. This sample is an update of the extract analyzed

by Abdulkadiroğlu et al. (2019), adding middle school applicants. As with Denver, the NYC

analysis sample includes preferences, priorities, assignments, demographic information, and

school enrollment. Middle school outcomes come from New York state achievement tests,

while the high school analysis focuses on SAT scores. The processing of NYC student records

is described in the Abdulkadiroğlu et al. (2019) data appendix. In both Denver and NYC, we

standardize all achievement tests and SAT scores to have mean zero and standard deviation

one separately by year.

Students in Denver rank up to five schools participating in the DPS unified enrollment

match, which covers public schools of all types, including traditional district schools and

charter schools. Priorities are assigned based on criteria like sibling status and applicant

neighborhood. A DA algorithm implemented with a single lottery tie-breaking number

assigns students to schools. We calculate assignment risk for DPS applicants using the

propensity score formula derived by Abdulkadiroğlu et al. (2017). This formula is an ana-

lytical large-market approximation to the school assignment propensity score for DA with a

random tie-breaker.

NYC applicants rank up to 12 academic programs in middle or high school. For the

purposes of our analysis, data on schools with multiple programs are aggregated to the school

level. The NYC match features a variety of tie-breakers, with “unscreened” schools using a

random lottery number and other “screened” schools using non-random tie-breakers such as
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past test scores. Propensity scores for NYC school assignment are computed as described

in Abdulkadiroğlu et al. (2019). These scores depend in part on a bandwidth for screened

school tie-breakers, similar to those used in standard regression discontinuity designs, which

we calculate using a procedure suggested by Calonico et al. (2019). As in Abdulkadiroğlu

et al. (2019), regression and 2SLS estimates that control for propensity scores also control

for local linear functions of the relevant screened-school tie-breakers for applicants inside the

bandwidth corresponding to each tie-breaking variable.

Table 1 describes students and schools in the DPS and NYC samples. The first column

shows statistics for the full sample of DPS middle school students, while column 2 displays

statistics for DPS applicants with non-degenerate assignment risk (these students have pij ∈
(0, 1) for at least one j). Columns 3-4 of the table report corresponding statistics for NYC

middle school students, and columns 5-6 describe NYC high school students. RC VAM and

other OLS VAM models are estimated using full samples, while bias tests and IV VAM

estimation use at-risk samples.

As is typical of large urban districts, most DPS and NYC students are disadvantaged,

with over 70 percent eligible for a subsidized lunch. Roughly a quarter of the students in each

sample face some assignment risk, with such applicants appearing broadly representative of

the full student populations. Appendix Table A1 compares the characteristics of students

offered seats at higher- and lower-value-added schools (as measured by the conventional

VAM estimates discussed below) within the at-risk sample. We see large differences in

student characteristics between those offered high- and low-value-added seats. Controlling

for assignment risk, however, these differences largely disappear. The fact that risk control

makes centralized assignment offers independent of observed characteristics suggests this is

likely to be the case for unobserved characteristics as well.11

The bottom rows of Table 1 show that most Denver and New York schools are oversub-

scribed. Specifically, at least one student has non-degenerate risk at 68 out of 83 Denver

middle schools, 448 out of 674 NYC middle schools, and 380 out of 537 NYC high schools.

This reflects the interdependence of school assignments in a centralized match: oversubscrip-

tion at in-demand schools generates assignment risk even for unpopular schools with fewer

11Balance checks regress student characteristics on the conventional value-added of the school where ap-
plicants are offered a seat along with a dummy indicating whether the applicant was offered a seat anywhere.
The risk controls here consist of expected value-added and the probability of receiving any offer. The former
is computed as a score-weighted average of school value-added. Appendix Table A1 shows that control for
risk eliminates imbalances between applicants offered high and low-value-added seats and between those
who do and don’t get offers. Differential attrition can create selection bias even with random assignment.
Appendix Table A2 shows that follow-up rates for key outcomes are unrelated to assigned school value-added
conditional on assignment risk. This makes it unlikely that selective attrition biases estimates of reduced
form school-offer effects.
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applicants than seats. At the same time, some schools are undersubscribed, while others

have small at-risk samples or low offer take-up rates. RC VAM allows us to estimate causal

effects for such schools even so.

5.1 Evaluating RC VAM

The test characterized by equation (14) is used to compare the predictive validity of RC

VAM estimates with results from three other OLS VAM estimators relying on fewer controls.

The first of these is a benchmark, labelled uncontrolled, that includes only application year

dummies in Xi and omits the propensity score controls, pi. The second is a conventional

value-added model adding sex, race, subsidized lunch status, special education, and limited

English proficiency, along with cubic functions of baseline math and ELA (reading) scores, to

the control vector Xi. This parallels widely-used VAM specifications for the measurement of

teacher and school effectiveness (e.g., Chetty et al. 2014a). A third model, labelled risk only,

omits conventional VAM controls but includes assignment propensity scores, pi. RC VAM

estimates come from regressions that combine conventional VAM controls with controls for

school assignment risk.

Uncontrolled VAM estimates are contaminated by selection bias. This can be seen in

Table 2, which reports the components of (14) for sixth grade math scores in each city.

For the purpose of VAM testing, schools are classified into 20 bins defined by ventiles of the

distribution of estimated conventional value-added. The testing equation, (11), is estimating

using bin-level (rather than single-school) offers and propensity scores. This aggregation may

increase test power relative to models using (many) school-specific offers as instruments for

αj(i) in (15).12 Aggregation also facilitates a graphical depiction of VAM validity. As shown

in column 1 of Table 2, the uncontrolled VAM specification generates forecast coefficients of

0.43 in DPS (shown in Panel A) and 0.59 in NYC (shown in Panel B). These estimates are

statistically different from one, while the overidentification and omnibus tests clearly reject

the null hypothesis of zero bias in the uncontrolled model.13

VAM research to date suggests that control for lagged test scores and student demo-

graphic characteristics eliminates much of the selection bias in naive comparisons of achieve-

ment across teachers and schools (Chetty et al., 2014a; Bacher-Hicks et al., 2014; Deming,

2014; Angrist et al., 2017). Consistent with this finding, the second column of Table 2 shows

that VAMs estimated with conventional controls boost the forecast coefficient markedly,

yielding estimates of 1.12 in DPS and 0.93 in NYC. The former estimate is statistically

indistinguishable from one, while the latter is marginally significantly different from one, re-

12On this point, see, e.g., Roodman (2009) and Bontempi and Mammi (2015).
13Appendix Table A3 reports results using alternative bin schemes.The choice of bin size matters little.
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flecting the fact that NYC estimates are considerably more precise. Omnibus test results are

marginal for conventional VAM in both cites. The DPS overidentification test also results

in a marginal rejection of the null hypothesis.

As can be seen in column 3 of Table 2, VAMs estimated with risk controls only also

improve greatly on the uncontrolled estimates. The risk-only model generates forecast coef-

ficients of 0.75 and 0.82 in DPS and NYC. In contrast with the test results for conventional

VAM, omnibus and overidentification test results clearly reject the null of unbiased risk-only

estimates. On the other hand, RC VAM estimates, evaluated in the fourth column of the

table, yield remarkably accurate and internally consistent predictions of school quality. For

both DPS and NYC schools, estimated RC VAM forecast coefficients are close to one, while

the associated omnibus tests offer little evidence against the claim that RC VAM estimates

can be interpreted as causal.

Test results for NYC high schools, reported in Table 3, likewise show that RC VAM

estimates for SAT math are virtually unbiased. In contrast, the other VAM estimators

evaluated in the table are almost certainly biased. This is unsurprising for uncontrolled

estimates, which yield a forecast coefficient of only 0.34. Conventional and risk-only VAMs

do much better, with forecast coefficients of 0.75 and 0.63. Even so, test results for both

models suggest substantial remaining bias. In these cases, forecast bias rather than a failure

of overidentifying restrictions is the source of the omnibus test rejection. The fact that the

lagged score controls used to construct conventional VAM estimates come from assessments

other than the SAT seems likely to contribute to the relatively poor performance of con-

ventional VAM estimates for high schools (a point made in a different context by Chetty

et al. (2014b)). The good performance of RC VAM (and the improvement of RC VAM over

risk-only VAM) is therefore especially impressive.14

The tests reported in Tables 2 and 3 can interpreted as asking whether VAM estimates

predict the causal effects of randomized school offers. Figure 1 presents a graphical summary

of these predictions. Specifically, the figure plots reduced form offer effects for each value-

added bin (the ρ` coefficients in equation (17)) against first-stage effects of bin offers on

predicted value-added of an applicant’s enrolled school (that is, OLS value-added at the

school attended, α̂j(i)). The corresponding 2SLS estimate of ϕ is given by the slope of a

weighted least squares line of best fit through the origin, while the overidentification test

checks whether this line fits all points up to sampling error (Angrist, 1991). Consistent with

the estimates in Tables 2 and 3, each panel shows that adding either conventional controls

14Lagged score controls used to compute the estimates in Table 2 come from 5th grade, taken the year
before the start of middle school; lagged score controls used to compute the estimates in Table 3 come from
8th grade, taken the year before the start of high school.
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or risk controls pushes the forecast slopes towards unity and reduces dispersion around the

best-fitting lines. Including both sets of controls results in tightly-estimated relationships

that are indistinguishable from the 45-degree line. Appendix Figure A1 and Appendix Table

A4 show broadly similar results for reading.

5.2 IV VAM

Our IV VAM application focuses on the NYC middle school sample, which includes the

largest numbers of students and schools with assignment risk in the three samples we’ve

looked at. The vector of mediators used to predict causal value-added includes a screened

school indicator and the alternative OLS VAM estimates evaluated in Tables 2 and 3. Fore-

cast regression parameters and the forecast residual variance are estimated by instrumenting

Mj(i) with a full set of school offer dummies, controlling for school assignment propensity

scores and the baseline covariates used to compute the test statistics reported in Table 2.

We use individual school offers rather than binned offers for IV VAM because the extra

instruments make Assumption MIV more plausible. As detailed in Appendix A.5, IV VAM

is implemented using a bias-corrected 2SLS estimator suitable for an asymptotic sequence

in which the number of instruments grows in proportion to sample size.

Using an uncontrolled VAM estimate to predict causal value-added yields an estimated

IV VAM forecast coefficient of only 0.25. This result, reported in the first column of Table

4, is qualitatively consistent with the test statistics reported in Table 2, which show strong

evidence of forecast bias and a failure of uncontrolled VAM to satisfy the corresponding

overidentification test.

The IV VAM procedure also generates an estimated screened-school effect on causal value

added. This is negative and significantly different from zero in column 1. The bottom rows

of Table 4 report IV VAM estimates of the forecast residual standard deviation, σν , along

with the overall standard deviation of causal value-added, σβ.15 These estimates are scaled

in standard deviation units of the student-level test score distribution. The estimates in

column 1 reveal substantial residual variation unexplained by uncontrolled VAM or screened

status (σν = 0.13) and a total value-added standard deviation of σβ = 0.19. The latter

estimate highlights the substantial variation in quality across NYC middle schools.

As shown in the second and third columns of Table 4, replacing uncontrolled VAM

estimates with conventional or risk-only value-added estimates increases the IV VAM forecast

coefficients, to around 0.9 and 0.6 respectively, while also decreasing the estimated residual

standard deviations. Screened school effects in these columns are smaller and not significantly

15The variance of causal value-added is obtained from the forecast regression as σ2
β = V ar(M ′jϕ) + σ2

ν .
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different from zero, suggesting the larger negative estimate in the first column is driven by

the diminished predictive power of uncontrolled VAM. IV VAM models generate roughly

comparable estimates of σβ in columns 1, 2, and 4 (around 0.2), though the estimate in

column 3 is notably larger at around 0.28, perhaps reflecting failure of Assumption MIV in

this case. It’s noteworthy that the forecast coefficient estimates for uncontrolled and risk-only

VAM in Tables 2 and 4 differ markedly, though not so for conventional VAM. This reflects

the near-unbiasedness of conventional VAM estimates. When the VAM estimates used as

mediator are biased, forecast coefficient estimates computed using binned instruments and

individual school offers should differ.

The estimates in columns 4 and 5 of Table 4 align with those in Table 3 in highlighting

the essential unbiasedness of RC VAM. Including the RC VAM estimates as an IV VAM

mediator yields a precisely estimated forecast coefficient of 0.98, with an estimated residual

standard deviation that’s virtually zero. At the same time, column 5 shows that models

including both conventional and RC VAM as mediators generate an insignificant negative

forecast coefficient for conventional VAM, while the RC VAM coefficient remains close to

one. This is impressive since conventional VAM is a pretty good predictor of causal VAM on

its own (including these two highly correlated mediators reduces the precision of estimated

forecast coefficients). The screened school coefficient estimates in these columns are likewise

precisely estimated zeros.

On balance, there would seem to be little scope for IV VAM posterior predictions to

improve on RC VAM. Conventional VAMs also generate remarkably accurate predictions of

causal effects. It’s important to note, however, that both of these models rely on controls for

lagged test scores measured one year prior to the outcome. In practice, these controls may

be unavailable. For example, the 2020 pandemic has disrupted standardized testing in many

districts, resulting in a year of missing test scores. Many districts also rely on “skip-year

growth” metrics that omit a year of test score data when transitioning to new assessment

systems. These scenarios necessitate VAM measurements that control for test scores lagged

by more than one year. To investigate the consequences of longer lags, column 6 of Table

4 reports IV VAM estimates from a procedure where the mediator is a set of conventional

VAM estimates computed using more distant lagged score controls. The estimates in this

case replace 5th grade scores with 3rd grade scores in a conventional VAM for sixth-grade

outcomes. Using earlier lagged score controls reduces the forecast coefficient to 0.80 with a

forecast residual standard deviation of σν = 0.07. This seems a noteworthy deterioration in

predictive power relative to the estimates in column 2. It remains, however, to gauge the

extent to which IV VAM ameliorates this.
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5.3 The MSE of Estimated VAMs

MSE provides a natural standard of comparison for IV VAM and OLS VAM estimators

computed using alternative sets of controls. Although RC VAM and other OLS value-added

estimators generate estimates of value-added for each school with no further computation

required, an empirical Bayes estimator can reduce MSE in this context by shrinking the

OLS estimates toward zero. Importantly, the MSE here is with reference to OLS VAM

parameters, setting aside the question of whether these have a causal interpretation.

Given a set of OLS VAM estimates, α̂j, the MSE-minimizing predictions of the corre-

sponding OLS coefficients, αj, are given by:

α∗j = λjα̂j, λj =
σ2
α

σ2
α + s2j

, (24)

where σ2
α is the variance of the OLS coefficients and s2j is the sampling variance of α̂j. The

shrinkage formula in (24) coincides with the conditional expectation E[αj|α̂j] when (αj, α̂j)

are joint Normal and uncorrelated across schools, and gives a best linear approximation to

this conditional expectation outside of Normality. As in Morris (1983), an empirical Bayes

estimator based on OLS plugs estimates of σ2
α and sj into equation (24).16

We turn next to MSE calculations with reference to a causal VAM target. The MSE of

α∗j as an estimator of causal value-added, βj, is given by

E
[
(α∗j − βj)2

]
= E

[
λ2js

2
j

]
+ σ2

αE
[
(ϕ− λj)2

]
+ σ2

ν . (25)

The first term in this formula reflects sampling variance in the OLS estimates, while the last

two terms are attributable to bias. A similar though somewhat more involved calculation

in Appendix A.7 derives the MSE of IV VAM posterior predictions, with a parallel decom-

position into bias and sampling variance. As with α∗j , the MSE of IV VAM is computed

by plugging estimates of forecast coefficients, residual variances, and sampling variances of

VAM parameters into the relevant formula.

Figure 2 compares the root mean squared error (RMSE) of OLS VAM and IV VAM

posterior predictions of causal value added, computed by applying (25) and the formulas in

Appendix A.7 to the parameter estimates summarized in Table 4.17 RMSE is minimized

by the RC VAM posterior, at around 0.06 standard deviations in the distribution of middle

16sj is taken to be the standard error of α̂j , while σ2
α is estimated by the variance of estimated α̂j ’s minus

the average squared standard error.
17The estimates in Table 4 imply different total variances of value-added. We therefore divide RMSE for

each model by the ratio of the estimate of σβ for that model to the corresponding estimate for the RC VAM
model. This puts RMSE on a common scale across models.
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school math scores. Because RC VAM is essentially unbiased, the IV VAM posterior for this

model coincides with that for OLS. Not surprisingly, sampling variance contributes far more

to the MSE of RC VAM than bias. What bias there is arises from shrinkage (i.e., λj 6= 1).

OLS VAM estimates generate posterior predictions with higher RMSE than RC VAM,

but this gap is reduced by IV VAM. The gains are most impressive for risk-only VAM, the

IV version of which cuts RMSE almost in half. This result can be read as saying that IV

VAM is a good substitute for lagged score controls, an point with high empirical relevance.

By contrast, IV VAM improves much less on conventional estimates, a result consistent with

Table 2. Interestingly, the RMSE of the conventional model exceeds the RMSE of RC VAM

despite the relative imprecision of the latter. The precision penalty with RC VAM reflects

the fact that risk controls absorb a substantial portion of the variation in school enrollment.

The last two columns in Figure 2 compare RMSE for OLS and IV VAM versions of

conventional VAM estimated with older lagged score controls. Consistent with the estimates

in the last column of Table 4, use of 3rd instead of 5th grade score controls increases RMSE

substantially. IV VAM reduces the resulting bias markedly, cutting RMSE by about 20%

relative to the OLS analog predictions and closing roughly half the gap with RC VAM. This

highlights the value of IV VAM estimation in applications with missing or degraded lagged

achievement controls.

6 Summary and Conclusions

VAM estimates may help families choose schools wisely, perhaps with life-changing conse-

quences. Policy-makers and educators likewise base high-stakes decisions related to school

access, expansion, and closure on VAM; the federal government and many states require

this. Given these stakes, how should the consequences of attendance at individual schools be

estimated? Many school accountability frameworks report rankings which amount to unad-

justed mean outcomes for each school. Such poorly controlled VAM estimates confuse school

quality with the socioeconomic status and racial make-up of student bodies. In large urban

districts like those examined here, schools sporting the highest test scores and graduation

rates tend to have an outsize share of non-minority students. These schools are also found

in wealthier neighborhoods.

The primary econometric challenge in this context is how to eliminate or at least moderate

this sort of selection bias. We show here that centralized assignment provides an invaluable

and easily exploited tool in service of this goal. By matching students to schools as a

function of observed characteristics and partially or fully randomized tie-breaking variables,

centralized assignment takes much of the mystery out of who goes where. This by-product of
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centralized matching can be key to VAM estimation strategies with minimal selection bias.

Our RC VAM estimator exploits centralized assignment by fully controlling for the many

student preference and priority variables that govern match outcomes. The problem of high

dimensional controls is solved by conditioning on the relatively coarse school assignment

propensity score induced by DA matching algorithms. Importantly, the RC VAM procedure

generates school-specific VAM estimates for all schools in a match, regardless of under-

subscription. Moreover, the assumptions justifying RC VAM are easily validated by testing

whether RC VAM residuals are orthogonal to offers of seats at over-subscribed schools.

Application of this test to schools in Denver and NYC suggest that RC VAM estimates

provide a remarkably accurate account of school quality. RC VAM estimates exhibit little

bias and outperform conventional VAM strategies on mean squared error grounds.

We’ve also introduced an IV VAM estimator that exploits reduced forms for causal VAM

estimation in districts with fewer randomized offers than schools. The IV VAM procedure

outlined here, which builds on and simplifies earlier efforts in this direction, amounts to 2SLS

estimation of mediating-variable effects followed by a simple weighted-average calculation of

empirical Bayes posterior means. IV VAM posterior predictions have an attractive best linear

predictor property and require weaker distributional assumptions than the fully parametric

hybrid IV-and-OLS VAM estimator developed in Angrist et al. (2017). The results reported

here show that IV VAM can improve on poorly-controlled estimates of school quality and

on estimates that rely on older and perhaps less relevant controls.

Farther afield, we expect the estimation strategies developed here to find application in

other markets with elements of systematic and chance assignment. Possible applications

include job assignment systems, such as those used by Teach for America to place interns in

school, the measurement of physician and hospital quality, and the consequences of receiving

rationed medical resources like new drugs and mechanical ventilation during the recent pan-

demic. In these contexts, RC VAM and IV VAM can be deployed to answer causal questions

about the consequences of receiving a particular assignment or scarce resource. Finally,

on the theoretical side, there’s work to be done on integrating the large market asymp-

totic sequence used to derive school assignment propensity scores with the many-instrument

asymptotic sequences used to study the behavior of econometric estimators like 2SLS. We

plan to explore these applications and questions in future work.
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Figure 1. Visual Instrumental Variables Tests for Bias (Math)
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B. NYC middle schools
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C. NYC high schools
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Notes: This figure plots reduced-form estimates against value-added first stages from each of 20 school
assignment bins. Outcomes are 6th grade math CSAP and CMAS scores for Denver, 6th grade math New
York State Assessment scores for NYC middle schools, and SAT math scores for NYC high schools. Scores
are standardized to be mean zero and standard deviation one in the student-level test score distribution,
separately by year. Assignments are binned by ventile of the estimated conventional VAM. See notes to
Table 2 for a description of the value-added models and test procedure. Filled markers indicate reduced
form and first stage estimates that are significantly different from each other at the 10% level. The solid
lines have slopes equal to the forecast coefficients in Table 2, while dashed lines indicate the 45-degree line.
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Figure 2. RMSE of Value-Added Estimates for NYC Middle Schools
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Notes: This figure plots root mean squared error (RMSE) for posterior predictions of value-added generated
by the models and outcomes used for Table 4. OLS VAM predictions are posterior means constructed from
OLS value-added estimates. IV VAM predictions are posterior means constructed from OLS and reduced
form estimates. Bars indicates RMSE. Blue and red shading mark the shares of MSE due to bias and
variance, respectively. Conventional and RC VAM posterior predictions are from models using 5th grade
tests as lagged score controls, as in Table 2. The conventional VAM posterior with older lagged scores relies
on 3rd grade tests for lagged score controls, as in column 6 of Table 4. Section 5 details the calculations
used to produce this figure.
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Table 1. Descriptive Statistics

All With risk All With risk All With risk
(1) (2) (3) (4) (5) (6) 

Demographics

Hispanic 0.592 0.580 0.413 0.445 0.382 0.431

Black 0.126 0.140 0.232 0.254 0.283 0.279

White 0.210 0.202 0.153 0.110 0.136 0.106

Female 0.493 0.494 0.492 0.483 0.525 0.522

Free/reduced price lunch 0.723 0.703 0.753 0.787 0.775 0.793

Special education 0.102 0.087 0.208 0.217 0.127 0.067

English language learner 0.393 0.415 0.098 0.099 0.093 0.087

Baseline scores
Math (standardized) 0.000 0.079 0.000 -0.052 0.000 -0.038

ELA (standardized) 0.000 0.071 0.000 -0.044 0.000 -0.035

Enrollment
Screened 0.000 0.000 0.055 0.039 0.110 0.065

Lottery 1.000 1.000 0.945 0.961 0.890 0.935

Students 37,101 8,116 185,988 46,410 121,583 32,432

Schools 83 76 674 623 537 516

Lotteries (schools with risk) 68 448 380

Denver middle schools NYC high schools

1 year lagged scores

NYC middle schools

Notes: This table describes the study samples in Denver and NYC. Column 1 reports descriptive statistics
for Denver students enrolled in 6th grade in the 2012-13 through 2018-19 school years. Column 3 reports
statistics for NYC middle school students enrolled in 6th grade in the 2016-17 through 2018-19 school
years. Column 5 reports statistics for NYC high school students enrolled in 9th grade in the 2012-13
through 2014-15 school years. Columns 2, 4, and 6 report on the corresponding samples of applicants
with assignment risk at at least one school. Baseline characteristics and lagged scores are from 5th grade
for middle school samples and 8th grade for high school samples. Baseline scores are standardized to be
mean zero and standard deviation one in the student-level test score distribution, separately by year.

29



Table 2. VAM Bias Tests for Middle School Math Scores

Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) 

Forecast coefficient 0.427 1.12 0.748 1.11
(0.059) (0.106) (0.085) (0.102)

First stage F statistic 48.5 104 41.7 97.1

Bias tests:

Forecast bias 95.3 1.21 8.72 1.21
[0.000] [0.272] [0.003] [0.271]

Overidentification (19 d.f.) 79.0 28.7 53.6 21.6
[0.000] [0.070] [0.000] [0.305]

Omnibus (20 d.f.) 174 29.9 62.3 22.8
[0.000] [0.071] [0.000] [0.298]

N (testing)
N (VAM estimation)

Forecast coefficient 0.594 0.927 0.822 0.983
(0.030) (0.041) (0.039) (0.044)

First stage F statistic 153 648 171 530

Bias tests:

Forecast bias 188 3.13 20.8 0.152
[0.000] [0.077] [0.000] [0.697]

Overidentification (19 d.f.) 84.5 25.9 52.9 27.6
[0.000] [0.134] [0.000] [0.091]

Omnibus (20 d.f.) 273 29.0 73.7 27.8
[0.000] [0.087] [0.000] [0.115]

N (testing)
N (VAM estimation)

  
185,988

Panel B. NYC middle schools

44,758

7,661
37,101

Homoskedastic

Panel A. Denver middle schools

Notes: This table reports tests for bias in OLS value-added models (VAMs). The uncon-
trolled VAM includes indicators for application year. The conventional VAM adds cubic
functions of baseline math and ELA scores and indicators for sex, race, subsidized lunch,
special education, limited English proficiency, each interacted with application year. Risk-
only VAM adds propensity score and running variable controls to the uncontrolled specifi-
cation. RC VAM combines the controls in the conventional and risk-only VAMs. Forecast
coefficients are from instrumental variables regressions of test scores on VAM fitted values,
instrumenting fitted values with binned assignment indicators. Assignments are binned by
ventile of the estimated conventional VAM. IV models control for propensity scores, running
variable controls, and baseline demographics and achievement. Test scores for outcomes and
VAMs are standardized to be mean zero and standard deviation one in the student-level test
score distribution, separately by year. The forecast bias test checks whether the forecast
coefficient equals 1; the overidentification test checks overidentifying restrictions implicit in
the procedure used to estimate the forecast coefficient. The omnibus test combines tests
for forecast bias and overidentification. Standard errors are reported in parentheses; test
p-values are reported in brackets.
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Table 3. VAM Bias Tests for SAT Math Scores, NYC High Schools

Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) 

Forecast coefficient 0.339 0.750 0.633 0.941
(0.030) (0.064) (0.055) (0.080)

First stage F statistic 148 206 80.9 148

Bias tests:

Forecast bias 476 15.1 44.3 0.538
[0.000] [0.000] [0.000] [0.463]

Overidentification (19 d.f.) 26.8 18.2 19.0 14.6
[0.110] [0.511] [0.456] [0.748]

Omnibus (20 d.f.) 503 33.3 63.3 15.1
[0.000] [0.031] [0.000] [0.768]

N (testing)
N (VAM estimation)

  
121,583

Homoskedastic

30,158

Notes: This table reports tests for bias in OLS value-added models (VAMs). See the notes to Table
2 for a description of models and test procedures. Standard errors are reported in parentheses;
test p-values are reported in brackets.
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Table 4. IV VAM Estimates for NYC Middle School Math Scores

(1) (2) (3) (4) (5) (6)

Mediators
No controls VAM 0.253

(0.029)

Conventional VAM 0.914 -0.134
(0.043) (0.131)

Risk only VAM 0.596
(0.040)

RC VAM 0.982 1.14
(0.040) (0.071)

Conventional VAM (older lagged scores) 0.801
(0.043)

Screened sector dummy -0.132 -0.025 -0.065 0.007 0.020 -0.057
(0.050) (0.037) (0.043) (0.035) (0.034) (0.040)

Standard deviations
Value-added 0.188 0.204 0.277 0.213 0.214 0.207

Forecast residual 0.128 0.052 0.094 0.013 0.012 0.073

First stage F statistic 28.2 39.6 26.4 38.4 39.3 32.4

N 46,410

NYC MS (5th grade lagged scores)

Notes: This table reports IV VAM parameter estimates for math scores. The rows listing mediators report
forecast coefficients and sector effects from instrumental variable regressions of test scores on the OLS VAM
estimates listed as mediator, along with an indicator for screened school attendance. Mediators are instrumented
with individual school assignment offer dummies. Conventional and RC VAM mediators for the estimates
reported in columns 1-5 use 5th grade tests as lagged score controls, as in Table 2. The conventional VAM
mediator used to compute the estimates in column 6 relies on 3rd grade tests for lagged score controls. Test
scores are standardized to be mean zero and standard deviation one in the student-level test score distribution,
separately by year. Standard errors are reported in parentheses.
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A Appendix

A.1 Proof of Lemmas 1 and 2

As in Rosenbaum and Rubin (1983), we establish Lemma 1 by showing Pr(Zij = 1 | εi, pi) =

Pr(Zij = 1 | pi) = pij. By the law of iterated expectations,

Pr(Zij = 1 | εi, pi) = E[E[Zij | θi, εi, pi] | εi, pi]

= E[E[Zij | θi, pi] | εi, pi]

= pij.

The second line uses Assumption CRA; the last line uses the fact that E[Zij | θi, pi] = E[Zij |
θi] = pij. We establish equation (4) by repeating the same argument, starting with the fact

that (εi, Xi) ⊥⊥ Zi | θi and adding Xi to the conditioning set in the first line above.

To establish Lemma 2, start with εi ⊥⊥ Zi | (pi, Xi), and assume εi ⊥⊥ Di | (pi, Xi, Zi).

Then by the law of iterated expectations,

Pr(Dij = 1 | εi, pi, Xi) = E[E[Dij | εi, pi, Xi, Zi] | εi, pi, Xi]

= E[E[Dij | pi, Xi, Zi] | εi, pi, Xi]

= E[E[Dij | pi, Xi, Zi] | pi, Xi]

= Pr(Dij = 1 | pi, Xi).

The second line follows from independence of εi and Di conditional on (pi, Xi, Zi), the third

follows from independence of Zi and εi conditional on (pi, Xi), and the fourth follows from

another application of the law of iterated expectations.

A.2 Proof of Corollary 1

The corollary is a consequence of the law of iterated expectations:

E[εi(Zij − pij)] = E[εi(E[Zij | εi, pij]− pij)]

= E[εi(E[Zij | pij]− pij)]

= E[εi(pij − pij)]

= 0.

The second equality uses Lemma 1, while the third equality uses the definition of pij.
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Risk adjustment is equivalent to control for the propensity score. To see this, note that

E[Zij | pi1, . . . , piJ ] = pij,

so the population regression of Zij on pi1, . . . , piJ is pij. The auxiliary regression that partials

out propensity scores therefore has residual Zij − pij. Equivalence then follows by standard

multivariate regression algebra.

A.3 Derivation of Equation (14)

Note that Y −Dα̂ = Y −Dα̂ϕ̂+Dα̂(ϕ̂− 1) and that

(Y −Dα̂ϕ̂)′ P̃ZDα̂(ϕ̂− 1) = 0,

since the 2SLS fitted values, P̃ZDα̂, are orthogonal to P̃Z(Y −Dα̂ϕ̂). Therefore,

(Y −Dα̂)′P̃Z(Y −Dα̂)

σ̂2
ξ

=
(Y −Dα̂ϕ̂+Dα̂(ϕ̂− 1))′P̃Z(Y −Dα̂ϕ̂+Dα̂(ϕ̂− 1))

σ̂2
ξ

=
(Dα̂(ϕ̂− 1))′P̃Z(Dα̂(ϕ̂− 1))

σ̂2
ξ

+
(Y −Dα̂ϕ̂)′P̃Z(Y −Dα̂ϕ̂)

σ̂2
ξ

+ 0

=
(ϕ̂− 1)2

σ̂2
ξ (α̂

′D′P̃ZDα̂)−1
+

(Y −Dα̂ϕ̂)′P̃Z(Y −Dα̂ϕ̂)

σ̂2
ξ

.

A.4 Proof of Lemma 3

Using the law of iterated expectations:

E

[(
L∑
`=1

δ`(Zi` − pi`)

)(
L∑
`=1

ψ`k(Zi` − pi`)

)]

= E

[
E

[(
L∑
`=1

δ`(Zi` − pi`)

)(
L∑
`=1

ψ`k(Zi` − pi`)

)
| Π,M, Z̃

]]

= E

[
E

[(
L∑
`=1

(
J∑
j=1

π`jE
[
νj | Π,M, Z̃

])
(Zi` − pi`)

)(
L∑
`=1

(
J∑
j=1

Mjkπ`j

)
(Zi` − pi`)

)
| Π,M, Z̃

]]
= 0,

since E
[
νj | Π,M, Z̃

]
= 0.
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A.5 IV VAM Consistency

The IV VAM estimation framework draws on Kolesár et al. (2015). Equations (20) and

(21) generalize equation (3.1) in Kolesár et al. (2015) to incorporate multiple endogenous

variables Mj(i)k. The Kolesár et al. (2015) consistency assumptions (1, 2(i), 3, 4, and 5) have

parallels here as follows:

Assumption IVR. The instruments and residuals Z̃i ∈ RLN , ε̃i ∈ R, υ̃i ∈ RK, for i =

1, . . . , N , N = 1, . . . are triangular arrays of random variables with (Z̃i, ε̃i, υ̃i), i = 1, . . . , N

exchangeable. (Z̃, 1) is full column rank with probability one.

Assumption REG. (ε̃i, υ̃
′
i)
′ | Z̃ are iid with zero mean, a positive definite covariance ma-

trix, and finite fourth moments.

Assumption NIV. The number of instruments satisfies L/N = α+o(N−1/2) for α ∈ [0, 1).

Assumption CPM. The (1+K)× (1+K) matrix ΛN/N = (δ ψ)′Z̃ ′⊥Z̃⊥(δ ψ)/N converges

in probability to a positive semidefinite concentration parameter matrix Λ, with Λ2...K,2...K

positive definite. Furthermore, E[ΛN/N ]→ Λ.

Assumption ZC. Λ1k = 0 for k = 2, . . . , 1 +K.

Here Z̃i denotes the ith observation on the centered offer matrix Z̃, υ̃ = (υ̃i1, . . . , υ̃iK)

collects the first stage residuals, and Z̃⊥ collects demeaned Z̃i`. The setup for the instruments

and residuals (Assumption IVR), regularity conditions (Assumption REG), assumption on

the number of instruments (Assumption NIV), and first assumption on the concentration

parameter matrix (Assumption CPM) are standard in Bekker many-instrument asymptotics.

As in Kolesár et al. (2015) we strengthen the last condition slightly and adopt their novel

zero correlation condition (Assumption ZC) which implies the large-sample orthogonality of

exclusion restriction violations and first stage effects. We again extend this condition to allow

for multiple endogenous variables, and note that it is satisfied under the mean-independence

of ν we use in Lemma 3. Formally, for each k, we have:

E[ΛN,1k/N ] = E[δ′Z̃ ′⊥Z̃⊥ψk/N ]

= E[E[ν ′ | Π,M, Z̃]Π′Z̃ ′⊥Z̃⊥ΠMk/N ]

= 0

when E[ν | Π,M, Z̃] = 0. It follows that Λ1k = 0 for each k under the convergence condition

in Assumption CPM.
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Under these five assumptions, Kolesár et al. (2015) show the consistency of a bias-

corrected 2SLS estimator of the form

ϕ̂ =
(
M̃ ′
⊥(I − kRZ̃⊥

)M̃⊥

)−1 (
M̃ ′
⊥(I − kRZ̃⊥

)Y⊥

)
,

where M̃ is anN×K matrix collecting observations of demeaned endogenous variablesMj(i)k,

Y⊥ is an N × 1 vector collecting observations of the outcome Yi, k is a scalar, and RZ̃⊥
is the

residual-maker matrix of Z̃⊥; i.e. = I−PZ̃⊥
for the projection matrix PZ̃⊥

= Z̃⊥(Z̃ ′⊥Z̃⊥)−1Z̃ ′⊥.

Kolesár et al. (2015) establish ϕ̂
p−→ ϕ for k = 1/(1+α). This aligns ϕ̂ with the estimator that

Donald and Newey (2001) propose for many-instrument settings, building on Nagar (1959).

Kolesár et al. (2015) also consider a modified version of this estimator which accounts for

many control variables which we use in the empirical applications. In practice we find both

bias-corrected estimators to yield very similar results to conventional 2SLS, which sets k = 1.

To estimate σν , we modify an estimator for Λ11 which Kolesár et al. (2015) show to be

consistent under additional assumptions and which they propose (and we use) for estimating

the asymptotic variance of ϕ̂. The modification follows from the fact that when E[ν |
Π,W, Z̃] = 0 and V ar(ν | Π,M, Z̃) = σ2

νI as in Corollary 2,

E[ΛN,11/N ] = E[δ′Z̃ ′⊥Z̃⊥δ/N ]

= E[ν ′Π′Z̃ ′⊥Z̃⊥Πν/N ]

= tr(E[Π′Z̃ ′⊥Z̃⊥Π])σ2
ν/N.

Thus, if Λ̂11 is a consistent estimator of Λ11 (implying Λ̂11
p−→ E[ΛN,11/N ] under Assumption

CPM) and t̂ is consistent for tr(E[Π′Z̃ ′⊥Z̃⊥Π])/N (i.e. t̂ − tr(E[Π′Z̃ ′⊥Z̃⊥Π]/N)
p−→ 0) then

by the continuous mapping theorem we have the consistent estimator σ̂ν =

√
Λ̂11/t̂

p−→ σν .

Following Kolesár et al. (2015), we use

Λ̂11 = max{(Y − M̃ϕ̂)′(PZ̃⊥
/(N − L)−RZ̃⊥

(L/N2))(Y − M̃ϕ̂), 0}

and further use

t̂ = tr(Π̂Z̃ ′⊥(PZ − Z̃⊥ψ̂(ψ̂′Z̃ ′⊥Z̃⊥ψ̂)−1ψ̂′Z̃ ′⊥)Z̃ ′⊥Π̂)/N.

These formulas are derived from Lemmas 1 and 2 in Bekker (1994), as detailed in Appendix

A of Kolesár et al. (2015).

Finally, it’s worth noting that the propensity score formulas derived in Abdulkadiroğlu

et al. (2017) and Abdulkadiroğlu et al. (2019) use a large-market approximation that fixes
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the number of schools while increasing the number of students participating in the match.

This large-market sequence scales applicants and school capacities in proportion, thereby

generating admissions cutoffs that are fixed across matches. The Bekker sequence, by con-

trast, increases the number of instruments and therefore (implicitly) the number of schools.

It remains to derive propensity scores for matching markets under this sequence. Impor-

tantly, however, the number of students per school in the matching markets studied here

appears to be large enough for a large-market sequence to yield estimated propensity scores

that balance student characteristics conditional on school offers.

A.6 Empirical Bayes Formulas

Proposition 1 follows from the observation that under the assumptions ρ̂ and β are joint-

normally distributed, conditional on (M,Π, Z̃). Specifically, since ρ = Πβ and β = Mϕ+ ν,[
ρ̂

β

]
| (M,Π, Z̃) ∼ N

([
ΠMϕ

Mϕ

]
,

[
ΠΠ′σ2

ν + Σ Πσ2
ν

Π′σ2
ν σ2

νI

])
.

Thus, E[β | ρ̂,M,Π, Z̃] is given by:

β∗ = E[β |M,Π, Z̃] + Cov(β, ρ̂ |M,Π, Z̃)V ar(ρ̂ |M,Π, Z̃)−1(ρ̂− E[ρ̂ |M,Π, Z̃])

= Mϕ+ Π′σ2
ν

(
ΠΠ′σ2

ν + Σ
)−1

(ρ̂− ΠMϕ)

= Ωρ̂+ (I − ΩΠ)Mϕ,

where Ω = Π′ (ΠΠ′ + Σ/σ2
ν)
−1

.

Corollary 2 follows from the observation that if E[ν | M,Π, Z̃] = 0 and V ar(ν |
M,Π, Z̃) = σ2

νI then the β∗ in equation (23) is the fitted value from a regression of β on ρ̂,

conditional on (M,Π, Z̃). Standard arguments show that this regression gives a minimum-

MSE linear approximation to the conditional expectation E[β | ρ̂,M,Π, Z̃], and so solves

(22) in the class of linear predictors. Specifically, β∗ solves:

min
b0,B1

E
[
((b0 +B1ρ̂)− β)′((b0 +B1ρ̂)− β)|M,Π, Z̃

]
,

where b0 and B1 are a constant vector and coefficient matrix, respectively. As noted in the

text, empirical Bayes value-added posteriors are obtained by plugging estimates of Π, Σ, ϕ,

and σ2
ν into the equation for β∗.
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Accounting for First-Stage Estimation Error

We also derive a posterior mean accounting for estimation error in the first stage matrix, Π,

assuming joint-Normal reduced form and first-stage estimation errors:[
ρ̂

V ec
(

Π̂
)] | (M,Π, Z̃, ρ) ∼ N

([
ρ

V ec (Π)

]
,

[
Σ Ψ

Ψ′ Ξ

])
,

as would be obtained in a conventional asymptotic approximation. Consider the MSE min-

imization problem

min
b0,B1,B2

E

[(
b0 +B1ρ̂+B2V ec

(
Π̂
)
− β

)′ (
b0 +B1ρ̂+B2V ec

(
Π̂
)
− β

)
|M,Π, Z̃

]
.

This problem is solved by the conditional regression of β on ρ̂ and V ec(Π̂) given M and Π:

β∗ =E[β |M,Π, Z̃]

+ Cov

(
β,

[
ρ̂

V ec(Π̂)

]′
|M,Π, Z̃

)
V ar

([
ρ̂

V ec(Π̂)

]
|M,Π, Z̃

)−1

×

[
ρ̂− E[ρ̂ |M,Π, Z̃]

V ec(Π̂)− E[V ec(Π̂ |M,Π, Z̃]]

]

=Mϕ+
[
Π′σ2

ν 0
] [ΠΠ′σ2

ν + Σ Ψ

Ψ′ Ξ

]−1 [
ρ̂− ΠMϕ

V ec(Π̂)− V ec(Π)]

]
.

Plugging the estimates of Π, Σ, Ψ, Ξ, ϕ, and σ2
ν in to this formula yields

β̂∗ = Ω̂ρ̂+ (I − Ω̂Π̂)Mϕ̂,

where

Ω̂ = Π̂′
(

Π̂Π̂′ + (Σ̂− Ψ̂Ξ̂−1Ψ̂′)/σ̂2
ν

)−1
.

The difference between this weighting matrix and the weighting matrix in Proposition 1

comes from the Ψ̂Ξ̂Ψ̂′ term, which adjusts the reduced form sampling variance matrix Σ̂

when estimates of ρ̂ and Π̂ are correlated.
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Posterior Means Without Under-subscription

When L = J , the feasible version of equation (23) can be written:

β∗ = Ŵ β̂ + (I − Ŵ )Mϕ̂,

where Ŵ = Ω̂Π̂ is a positive definite matrix and β̂ = Π̂−1ρ̂ is a two-stage least squares

estimate of β using risk-adjusted offers as instruments for school enrollment. When M

is a vector of OLS coefficients, β̂∗ is therefore a matrix-weighted average of OLS and IV

estimates of β, with the former scaled by the estimated forecast coefficient ϕ̂. The weights

depend on the estimated first-stage matrix Π̂, the estimated forecast residual variance σ̂2
ν ,

and estimation error Σ.

Posterior Means that Account for OLS Sampling Variance

Let M = α̂ = α+ eα be a vector of noisy OLS value-added estimates. We assume the vector

of estimation error, eα, is mean-zero and uncorrelated with α and ν conditional on Π and Z̃.

We also assume E[αα′ | Π, Z̃] = σ2
αI and write E[eαe

′
α | Π, Z̃] = Vα. Then, with β = ϕα+ ν

and E[α | Π, Z̃] = [ν | Π, Z̃] = 0, the posterior mean of β given the reduced-form and OLS

estimates becomes:

β∗ =Cov

(
β,

[
ρ̂

α̂

]′
|M,Π, Z̃

)
V ar

([
ρ̂

α̂

]
|M,Π, Z̃

)−1 [
ρ̂

α̂

]

=
[
Π′(ϕ2σ2

α + σ2
ν) ϕσ2

αI
] [ΠΠ′(ϕ2σ2

α + σ2
ν) + Σ Πϕσ2

α + Vρα

Π′ϕσ2
α + V ′ρα σ2

αI + Vα

]−1 [
ρ̂

α̂

]
,

where Vρα denotes the covariance of reduced-form and OLS estimation error. This can be

written

β∗ = Ωρ̂ρ̂+ Ωα̂α̂,

where

Ωρ̂ =
(

Π′(ϕ2σ2
α + σ2

ν)− ϕσ2
α

(
σ2
αI + Vα

)−1 (
Π′ϕσ2

α + V ′ρα
))

×
(

ΠΠ′(ϕ2σ2
α + σ2

ν) + Σ−
(
Πϕσ2

α + Vρα
) (
σ2
αI + Vα

)−1 (
Π′ϕσ2

α + V ′ρα
))−1
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and

Ωα̂ = (I − Ωρ̂Π)ϕσ2
α

(
σ2
αI + Vα

)
− Ωρ̂Vρα

(
σ2
αI + Vα

)
.

This formula is the same as equation (17) in Angrist et al. (2017) when the mediating vector

M includes OLS VAM and the VAM parameters are normalized so that E[αj] = E[βj] = 0.

With unbiased OLS VAM, so that ϕ = 1 and σ2
ν = 0, and with homoskedastic estimation

error, Vρα = ΠVα by the usual Gauss-Markov logic. Then,

Π′(ϕ2σ2
α + σ2

ν)− ϕσ2
α

(
σ2
αI + Vα

)−1 (
Π′ϕσ2

α + V ′ρα
)

=
(

Π′σ2
α − σ2

α

(
σ2
αI + Vα

)−1 (
Π′σ2

α + VαΠ′
))

= 0

such that Ωρ̂ = 0 and no weight is put on the reduced-form vector. Furthermore,

Ωα̂ = σ2
α

(
σ2
αI + Vα

)
.

In this case β∗ = Ωα̂α̂ can be seen to be the conventional OLS-VAM posteriors. For example,

when Vα is diagonal, Ωα̂ = diag(λ1, . . . , λJ) and we obtain the α∗j = λjα̂j in equation (24).

A.7 Mean Squared Error Calculations

By the law of iterated expectations, the mean squared error of the conventional shrinkage

estimator in equation (25) is given by:

E
[
(α∗j − βj)2

]
= E

[
V ar(α∗j |αj, βj, λj)

]
+ E

[(
E[α∗j |αj, βj, λj]− βj

)2]
.

The first term is the expected sampling variance of the value-added estimator, while the sec-

ond equals expected squared bias conditional on the underlying VAM parameters. Suppose

the sampling error sj (and therefore λj) is independent of αj and νj across schools. The

variance term is given by

E
[
V ar(α∗j |αj, βj, λj)

]
= E

[
λ2jV ar(α̂j|αj, βj, λj)

]
= E

[
λ2js

2
j

]
,
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and the bias component is given by

E
[(
E[α∗j |αj, βj, λj]− βj

)2]
= E

[
(λjαj − ϕαj − νj)2

]
= E[(λj − ϕ)2α2

j ]− 2E[(λj − ϕ)αjνj] + E[ν2j ]

= E[(ϕ− λj)2]σ2
α + σ2

ν ,

where the third line uses independence of (αj, νj) from λj along with E[αjνj] = 0. Adding

these two components yields equation (25).

We calculate the mean squared error of the IV VAM posterior predictions in Appendix

A.6, accounting for estimation error in both the reduced form ρ̂ and OLS-VAM mediators

M = α̂. Write the reduced form as

ρ̂ = Πβ + eρ = Παϕ+ Πν + eρ,

where eα is again mean-zero given Π, with E[eαe
′
α | Π] = Vα and E[eαe

′
ρ | Π] = Vαρ. The

difference between the IV VAM posterior and causal value-added is then

β∗ − β =Ωρ̂(Παϕ+ Πν + eρ) + Ωα̂(α + eα)− αϕ− ν

= ((Ωρ̂Π− I)ϕ+ Ωα̂)α + (Ωρ̂Π− I) ν + Ωρ̂eρ + Ωα̂eα.

Average mean squared error across the J schools can then be written

J−1E [(β∗ − β)′(β∗ − β)] =J−1tr(((Ωρ̂Π− I)ϕ+ Ωα̂) ((Ωρ̂Π− I)ϕ+ Ωα̂)′ σ2
α

+ (Ωρ̂Π− I) (Ωρ̂Π− I)′ σ2
ν

+ Ωρ̂ΣΩ′ρ̂ + Ωα̂VαΩ′α̂ + Ωρ̂V
′
αρΩ

′
α̂ + Ωα̂VραΩ′ρ̂)

We calculate RMSE by plugging estimates of Ωρ̂, Ωα̂, Π, ϕ, Σ, σ2
ν , σ

2
α, Vα, and Vαρ into this

expression and taking its squared root. As with α∗j , the average mean squared error of β∗j is

the sum a bias term

J−1tr
(
((Ωρ̂Π− I)ϕ+ Ωα̂) ((Ωρ̂Π− I)ϕ+ Ωα̂)′ σ2

α + (Ωρ̂Π− I) (Ωρ̂Π− I)′ σ2
ν

)
and a variance term,

J−1tr
(
Ωρ̂ΣΩ′ρ̂ + Ωα̂VαΩ′α̂ + Ωρ̂V

′
αρΩ

′
α̂ + Ωα̂VραΩ′ρ̂

)
.
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Figure A1. Visual Instrumental Variables Tests for Bias (Reading)

A. Denver middle schools
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B. NYC middle schools
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C. NYC high schools

Forecast coef.: 0.322
Omnibus p-val.: 0.000-.4

-.2
0

.2
.4

.6
.8

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4 .6 .8
First stage effect on OLS VAM

Uncontrolled

Forecast coef.: 0.795
Omnibus p-val.: 0.210-.4

-.2
0

.2
.4

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4
First stage effect on OLS VAM

Conventional

Forecast coef.: 0.653
Omnibus p-val.: 0.000-.4

-.2
0

.2
.4

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4
First stage effect on OLS VAM

Risk only

Forecast coef.: 0.975
Omnibus p-val.: 0.669-.4

-.2
0

.2
.4

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4
First stage effect on OLS VAM

RC VAM

Forecast coef. line 45 degree line

Forecast coef.: 0.372
Omnibus p-val.: 0.000-.4

-.2
0

.2
.4

.6

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4 .6
First stage effect on OLS VAM

Uncontrolled

Forecast coef.: 0.799
Omnibus p-val.: 0.050-.4

-.2
0

.2
.4

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4
First stage effect on OLS VAM

Conventional

Forecast coef.: 0.637
Omnibus p-val.: 0.000-.4

-.2
0

.2
.4

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4
First stage effect on OLS VAM

Risk only

Forecast coef.: 0.910
Omnibus p-val.: 0.426-.4

-.2
0

.2
.4

R
ed

uc
ed

 fo
rm

 e
ffe

ct
 o

n 
te

st
 s

co
re

s

-.4 -.2 0 .2 .4
First stage effect on OLS VAM

RC VAM

Forecast coef. line 45 degree line

Notes: This figure plots risk-adjusted offer reduced-form estimates against value-added first stages from each
of 20 school assignment offer bins. Outcomes are 6th grade reading CSAP and CMAS scores for Denver,
6th grade ELA New York State Assessment scores for NYC middle schools, and SAT reading/writing scores
for NYC high schools. Assignments are binned by ventile of the estimated conventional VAM. See notes
to Table 2 for a description of the value-added models and test procedure. Filled markers indicate reduced
form and first stage estimates that are significantly different from each other at the 10% level. The solid
lines have slopes equal to the forecast coefficients in Table 2, while dashed lines indicate the 45-degree line.
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Table A1. Statistical Tests for Balance

Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled
(1) (2) (3) (4) (5) (6) 

Demographics
Hispanic
Offered VAM -0.509 -0.042 -0.173 0.030 -1.47 0.002

(0.020) (0.065) (0.008) (0.025) (0.024) (0.013)

Any offer -0.029 0.012 -0.016 -0.013 -0.02 -0.131
(0.007) (0.029) (0.003) (0.009) (0.004) (0.104)

Black
Offered VAM 0.083 0.055 -0.42 -0.003 -1.79 -0.006

(0.013) (0.044) (0.007) (0.023) (0.021) (0.011)

Any offer -0.043 -0.039 -0.136 0.011 -0.014 0.056
(0.005) (0.022) (0.003) (0.008) (0.003) (0.097)

White
Offered VAM 0.411 -0.056 0.339 0.004 1.19 0.003

(0.018) (0.055) (0.006) (0.013) (0.019) (0.009)

Any offer 0.085 0.065 0.072 0.004 0.011 -0.002
(0.005) (0.019) (0.002) (0.005) (0.002) (0.055)

Female
Offered VAM -0.068 0.080 0.008 0.005 0.027 0.145

(0.020) (0.065) (0.008) (0.026) (0.027) (0.106)

Any offer 0.011 -0.046 0.032 -0.02 0.083 0.012
(0.007) (0.032) (0.003) (0.009) (0.004) (0.013)

Free/reduced price lunch
Offered VAM -0.529 0.052 -0.33 0.034 -1.31 -0.003

(0.020) (0.061) (0.007) (0.020) (0.023) (0.011)

Any offer -0.074 -0.031 -0.091 0.000 -0.017 -0.161
(0.006) (0.025) (0.003) (0.007) (0.003) (0.088)

Special education
Offered VAM -0.050 -0.016 -0.096 -0.014 -0.258 0.004

(0.011) (0.036) (0.006) (0.022) (0.011) (0.007)

Any offer -0.001 0.033 -0.072 0.006 -0.346 -0.043
(0.004) (0.019) (0.003) (0.008) (0.003) (0.056)

English language learner
Offered VAM -0.246 -0.020 -0.019 0.034 -0.412 -0.006

(0.019) (0.063) (0.004) (0.017) (0.014) (0.008)

Any offer -0.072 -0.069 -0.016 0.002 -0.028 -0.016
(0.007) (0.031) (0.002) (0.006) (0.002) (0.067)

Baseline scores
Math (standardized)
Offered VAM 0.892 0.187 1.15 0.002 6.95 0.054

(0.040) (0.130) (0.015) (0.046) (0.041) (0.158)

Any offer 0.221 -0.057 0.341 -0.032 0.339 0.012
(0.012) (0.057) (0.006) (0.017) (0.007) (0.018)

ELA (standardized)
Offered VAM 0.753 0.109 0.935 -0.015 6.01 0.330

(0.040) (0.126) (0.016) (0.049) (0.043) (0.159)

Any offer 0.192 -0.065 0.320 -0.012 0.359 -0.010
(0.013) (0.056) (0.006) (0.017) (0.006) (0.018)

N 37,101 8,116 185,988 46,410 121,583 32,432

Offered conventioanl VAM

NYC high schoolsNYC middle schoolsDenver middle schools

Notes: This table reports balance statistics, estimated by regressing baseline covariates on the estimated
conventional OLS VAM of the offered school and an indicator for any offer. Columns 2, 4, and 6 control for
expected OLS VAM, any offer risk, and running variable controls in NYC samples. Robust standard errors
are reported in parentheses.
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Table A2. Differential Attrition

Controls: Expected VAM
Expected VAM, any offer 

risk
(1) (2) 

Offered VAM 0.028 0.017
(0.039) (0.039)

Any offer 0.025
(0.020)

N 9,250 9,250

Offered VAM 0.037 0.044
(0.017) (0.017)

Any offer 0.038
(0.006)

N 53,313 53,313

Offered VAM -0.031 -0.055
(0.082) (0.085)

Any offer 0.018
(0.010)

N 53,068 53,068

1 year lags

Panel A. Denver middle schools

Panel B. NYC middle schools

Panel C. NYC high schools

Notes: This table reports differential attrition estimates. The regression re-
ported in column 1 regresses an indicator for follow-up in the sample on the
estimated conventional OLS VAM of the offered school, controlling for expected
OLS VAM and running variable controls in NYC samples. The regression in
column 2 additionally regresses follow-up on an indicator for any offer and an
any offer risk control. Robust standard errors are reported in parentheses.
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Table A3. Sensitivity of Tests for Bias to Instrument Binning

Uncontrolled Conventional Risk only RC VAM Uncontrolled Conventional Risk only RC VAM Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Forecast coefficient 0.668 1.15 0.936 1.15 0.611 0.936 0.851 1.000 0.359 0.790 0.679 0.967
(0.071) (0.111) (0.096) (0.111) (0.034) (0.047) (0.046) (0.051) (0.035) (0.074) (0.065) (0.091)

First stage F statistic 122 364 135 340 547 2042 560 1643 550 771 318 592

Bias tests:
Forecast bias 22.2 1.71 0.440 1.80 130 1.83 10.6 0.000 331 8.07 24.7 0.130

[0.000] [0.191] [0.507] [0.180] [0.000] [0.176] [0.001] [0.998] [0.000] [0.004] [0.000] [0.719]

Overidentification (3 d.f.) 3.86 4.33 2.29 2.88 41.1 6.17 22.7 11.2 10.2 1.72 2.81 1.14
[0.277] [0.228] [0.514] [0.411] [0.000] [0.103] [0.000] [0.010] [0.017] [0.633] [0.422] [0.767]

Omnibus (4 d.f.) 26.1 6.04 2.73 4.68 171 8.00 33.3 11.2 341 9.8 27.5 1.27
[0.000] [0.196] [0.604] [0.322] [0.000] [0.092] [0.000] [0.024] [0.000] [0.044] [0.000] [0.866]

N (testing)
N (VAM estimation)

Forecast coefficient 0.492 1.07 0.745 1.09 0.621 0.918 0.838 0.976 0.358 0.779 0.677 0.981
(0.058) (0.105) (0.084) (0.105) (0.032) (0.043) (0.042) (0.046) (0.031) (0.066) (0.058) (0.083)

First stage F statistic 85.8 196 80.6 171 251 1114 287 911 279 392 148 278

Bias tests:
Forecast bias 75.4 0.424 9.20 0.705 138 3.63 15.2 0.267 420 11.2 30.7 0.054

[0.000] [0.515] [0.002] [0.401] [0.000] [0.057] [0.000] [0.605] [0.000] [0.001] [0.000] [0.817]
Overidentification (9 d.f.) 37.6 14.5 30.8 11.4 52.0 16.1 29.7 19.3 11.9 5.11 5.79 2.42

[0.000] [0.107] [0.000] [0.250] [0.000] [0.064] [0.001] [0.023] [0.218] [0.824] [0.760] [0.983]
Omnibus (10 d.f.) 113 14.9 40.0 12.11 190 19.7 44.9 19.6 432 16.3 36.5 2.47

[0.000] [0.135] [0.000] [0.278] [0.000] [0.032] [0.000] [0.034] [0.000] [0.091] [0.000] [0.991]

N (testing)
N (VAM estimation)

Forecast coefficient 0.427 1.12 0.748 1.11 0.594 0.927 0.822 0.983 0.339 0.750 0.633 0.941
(0.059) (0.106) (0.085) (0.102) (0.030) (0.041) (0.039) (0.044) (0.030) (0.064) (0.055) (0.080)

First stage F statistic 48.5 104 41.7 97.1 153 648 171 530 148 206 80.9 148

Bias tests:
Forecast bias 95.3 1.21 8.72 1.21 188 3.13 20.8 0.152 476 15.1 44.3 0.538

[0.000] [0.272] [0.003] [0.271] [0.000] [0.077] [0.000] [0.697] [0.000] [0.000] [0.000] [0.463]
Overidentification (19 d.f.) 79.0 28.7 53.6 21.6 84.5 25.9 52.9 27.6 26.8 18.2 19.0 14.6

[0.000] [0.070] [0.000] [0.305] [0.000] [0.134] [0.000] [0.091] [0.110] [0.511] [0.456] [0.748]
Omnibus (20 d.f.) 174 29.9 62.3 22.8 273 29.0 73.7 27.8 503 33.3 63.3 15.1

[0.000] [0.071] [0.000] [0.298] [0.000] [0.087] [0.000] [0.115] [0.000] [0.031] [0.000] [0.768]

N (testing)
N (VAM estimation)

7,505 42,866 27,629
37,101 185,988 121,583

C. 20 Offer Bins

37,101 185,988 121,583
7,661 44,758 30,158

A. 4 Offer Bins

37,101 185,988 121,583
B. 10 Offer Bins

6,437 37,008 23,216

2SLS (homoskedastic & summed omnibus & full sample risk VAMs)

Denver middle schools NYC middle schools NYC high schools

Notes: This table reports tests for bias in OLS value-added models (VAMs). See notes to Table 2 for a description of models and test procedures. Panel A reports
estimates that use school assignment instruments binned by quartile of estimated conventional VAM; Panel B reports estimates that use instruments binned by
decile; and Panel C reports estimates that use instruments binned by ventile (same as in Tables 2 and 3). Standard errors are reported in parentheses; test p-values
are reported in brackets.
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Table A4. Tests for Bias in OLS Value-Added Models (Reading)

Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) 

Forecast coefficient 0.453 1.13 0.683 1.06
(0.056) (0.108) (0.074) (0.101)

First stage F statistic 49.6 94.1 51.3 100.0

Bias tests:
Forecast bias 94.3 1.48 18.5 0.388

[0.000] [0.225] [0.000] [0.533]

Overidentification (19 d.f.) 55.3 18.3 35.3 16.0
[0.000] [0.503] [0.013] [0.655]

Omnibus (20 d.f.) 150 19.8 53.8 16.4
[0.000] [0.472] [0.000] [0.692]

N (testing)
N (VAM estimation)

Forecast coefficient 0.372 0.799 0.637 0.910
(0.033) (0.062) (0.054) (0.071)

First stage F statistic 155 567 113 408

Bias tests:
Forecast bias 363 10.4 44.9 1.61

[0.000] [0.001] [0.000] [0.205]

Overidentification (19 d.f.) 50.9 21.0 38.0 18.9
[0.000] [0.338] [0.006] [0.466]

Omnibus (20 d.f.) 414 31.4 82.9 20.5
[0.000] [0.050] [0.000] [0.426]

N (testing)
N (VAM estimation)

Forecast coefficient 0.322 0.795 0.653 0.975
(0.037) (0.083) (0.071) (0.101)

First stage F statistic 126 179 62.5 131

Bias tests:
Forecast bias 343 6.09 23.6 0.059

[0.000] [0.014] [0.000] [0.807]

Overidentification (19 d.f.) 31.8 18.7 24.6 16.7
[0.033] [0.473] [0.173] [0.607]

Omnibus (20 d.f.) 375 24.8 48.2 16.8
[0.000] [0.210] [0.000] [0.669]

N (testing)
N (VAM estimation)

45,110

121,583

Panel B. NYC middle schools

185,988
Panel C. NYC high schools

30,754

homoskedastic & summed omnibus & full sample risk VAMs

Panel A. Denver  middle schools

37,101
7,932

Notes: This table reports tests for bias in OLS value-added models (VAMs). See notes to
Table 2 for a description of models and test procedures. Standard errors are reported in
parentheses; test p-values are reported in brackets.
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