
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2012

The Call Center Scheduling Problem using Spreadsheet The Call Center Scheduling Problem using Spreadsheet

Optimization and VBA Optimization and VBA

Katherine Perry
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Physical Sciences and Mathematics Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/2708

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F2708&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarscompass.vcu.edu%2Fetd%2F2708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/2708?utm_source=scholarscompass.vcu.edu%2Fetd%2F2708&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

The Call Center Scheduling Problem using
Spreadsheet Optimization and VBA

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
at Virginia Commonwealth University.

by

Katherine Marie Perry

Master of Mathematical Sciences
with a concentration in
Operations Research

J. Paul Brooks, Chair

José H. Dulá
Jason R. W. Merrick

April 27, 2012
Richmond, Virginia

Keywords: Call Center Scheduling, Decision Support Systems, Spreadsheet Optimization

Copyright 2012, Katherine M. Perry

ii

Acknowledgement

This would not be possible without the support of many people. I would like to express my

gratitude to my advisor, Dr. J. Paul Brooks for his abundant help and assistance, support, and

guidance. I give a very special thanks to my parents, Randal and Barbara Perry, who have given

their love and support throughout my entire educational career and all other aspects of my life. I

would also like to thank Chris Eaheart for his continual motivation and encouragement

throughout the completion of this thesis; and to the rest of my friends and family for their endless

love and support.

iii

Table of Contents

Abstract .. v

Chapter 1: Introduction ... 1

1.1 Introduction to Math Modeling ... 1

1.2 Literature Review .. 5

1.2.1 The Scheduling Problem .. 5

1.2.2 Formulations .. 6

1.2.3 Solution Methods ... 15

1.2.4 Heuristics ... 16

1.2.5 Mathematical Programming & Column Generation 19

1.3 Spreadsheet Optimization ... 21

1.4 Microsoft Excel & Visual Basic for Applications .. 22

1.5 Overview ... 24

Chapter 2: Integer Programming Formulation and Spreadsheet Implementation 26

2.1 Statement of Problem .. 26

2.2 Benchmark Goals for the Call Center ... 28

2.3 Methodology ... 29

2.3.1 The Integer Program – Set Covering ... 29

2.3.2 The Model .. 30

2.3.3 How the Tool Works .. 34

2.3.4 Macros .. 37

iv

2.3.5 Implementation Challenges ... 38

Chapter 3: Empirical Evaluation of Spreadsheet Scheduling Tool .. 41

3.1 Schedule Metrics ... 41

3.2 Comparison ... 42

3.2.1 Normal Staff Gap ... 42

3.2.2 Run-time Comparison .. 50

3.3 Conclusions ... 51

References ... 53

Chapter 4: Appendix ... 55

4.1 User Manual .. 55

4.1.1 Installing OpenSolver .. 55

4.1.2 Installing Excel Solver ... 59

4.1.3 Using the Model ... 62

4.2 Macros ... 68

4.2.1 Generate Schedules Macro .. 68

4.2.2 Minimize Macro ... 75

4.2.3 Optimize Macro ... 84

4.2.4 Select Demand Macros .. 93

v

Abstract

THE CALL CENTER SCHEDULING PROBLEM USING SPREADSHEET
OPTIMIZATION AND VBA

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
at Virginia Commonwealth University.

Katherine Marie Perry

Master of Mathematical Sciences
with a concentration in Operations Research

Finding the optimal solution for the call-center scheduling problem can be done by using
Microsoft Excel with an integer programming software add-in. Utilizing VBA, we are able to
vary start, break, and lunch times as well as number of employees. By creating a list of all
possible schedules that follow these requirements, we use the optimization engine to solve for
the best possible combination of individual schedules. Custom programs for optimization such
as this are becoming a vital part of the world today as decisions need to be made quickly. This
flexible and easy to use scheduling tool saves time and effort while creating peace of mind
knowing that the best possible solution has been found. Using this tool, we are able to decrease
the amount of time to create schedules from approximately 15 hours of manual work to 25.2
seconds. Additionally, we are able to improve the accuracy of meeting the forecast –
guaranteeing all manpower demand is met with an efficient and reliable tool. Accuracy,
efficiency, and reliability are traits that anyone could wish for, and this tool makes that possible.

This work was done for SunTrust Mortgage call center, Richmond, VA

Katherine M. Perry

1

Chapter 1: Introduction

1.1 Introduction to Math Modeling

The approach to decision making which involves developing a mathematical representation

of a real-life situation is called a mathematical model. An optimization mathematical model

helps us find the solution to our problem which will produce the best results according to the

goal [16]. The components of an optimization model include:

1. Decision variables

2. Objective function(s)

3. Constraints

Decision variables are the variables whose values are under our control and influence the

performance of the system. An example of a decision variable is:

�� = the number of resource � to produce for � = 1,2,…, �

Upon solution, for every type of resource, we will have values of ��, ��,…, �� prescribe

quantitative decisions.

Katherine M. Perry

2

The objective function is a function in which we wish to maximize or minimize. For

example:

1. Minimize total cost

2. Maximize profit

3. Minimize resources used

They can also be more complicated:

4. Minimize the maximum deviation from our target resources used

Constraints are the restrictions or requirements set for the situation. Some examples are:

• You cannot use more than 5 gallons of solution A

• Temperature must remain between 150 and 200 degrees Fahrenheit

• Number of employees must be at least 10

After all of these pieces are defined, we can turn them into a mathematical model ready for

optimization. Doing an example of a simple linear mathematical program, we can see how to

build a model:

Suppose you have a company that manufactures two products: widgets and gizmos. Widgets

sell for $6 per piece but cost $2 to make. Gizmos sell for $8 per piece and cost $5 to produce.

We also know that the company can only produce 25 widgets and 20 gizmos, and can only

produce 35 total items. How many of each product should you produce in order to maximize

profits?

Katherine M. Perry

3

To solve, we must first identify the objective: Decide how many widgets and gizmos we

should produce to maximize profit. Since it costs $2 to make a widget, but sells for $6, the profit

on one widget is $6 - $2 = $4. With the same logic, gizmos have a profit of $8 - $5 = $3. So, for

each widget sold, we earn a profit of $4 and for each gizmo sold, we earn $3.

Next, we will identify the decision variable(s):

�� = the number of widgets to produce

�� = the number of gizmos to produce

Our constraints are:

• we can produce no more than 25 widgets

• we can produce no more than 20 gizmos

• we can produce no more than 35 total items

So, to put together our full math program, we have:

Maximize

4��
 3��

Subject to:

�� � 25

�� � 20

��
 �� � 35

�� � 0

�� � 0

Katherine M. Perry

4

This problem is now properly formulated and ready to solve. After running through an

optimization engine, we will receive the optimal solution. The output will assign the proper

number of widgets and gizmos to produce:

�� = 25
�� = 10

So, we know that we should produce 25 widgets and 10 gizmos. From here, we can plug into

our objective function and solve for our total profit:

$4 � 25
 $3 � 10 = $130

The basic math model is solved as a linear program. This means that the decision variables

can be any value. In this problem, we could have a solution that says to produce a fraction of a

widget or gizmo. To make sure that only whole numbers can be used, we must define the model

as an integer program. This means that all solutions must be whole numbers. Now:

Maximize

4��
 3��

Subject to:

�� � 25

�� � 20

��
 �� � 35

�� � 0, integer

�� � 0, integer

Katherine M. Perry

5

The formulation is properly defined and the optimization engine knows that we are now

finding the optimal solution with integers. This is a more computationally complex problem, but

important in many real-life applications.

The goal of the optimization model is to find values of the decision variables that will

optimize (maximize or minimize) the objective function among the set of all values for the

decision variables that satisfy the given constraints [20]. It guarantees us the best solution and

also guarantees that all constraints will be satisfied, thus, instilling confidence in any decisions

made using this method.

1.2 Literature Review

1.2.1 The Scheduling Problem

Call centers are becoming increasingly popular and important. Whether it is to deal with

customers of a product or service, or to provide a specialists’ help to different businesses,

everyone deals with call centers from time to time. With this increase in call-center popularity

comes an increase in interest in operations research analysts to design and implement the best

schedules for these centers. Being able to reach a technician or call operator requires a lot of

thought and planning, including forecasting number of calls at different times of the day,

determining how many workers need to be working to handle these forecasted number of calls,

and lastly, how to assign employees to these shifts so that enough people are working to cover

the forecast. In small sizes, this problem can be fairly trivial, but once the requirements for

Katherine M. Perry

6

workers decreases in flexibility and more and more employees are available, the harder this

problem becomes to solve.

Because this is such a daunting task, it is necessary that we come up with an efficient and

accurate method of determining the schedule for employees based on this forecast. The general

model for this is an optimization problem [18], which defines the overall goal the program

(objective), and what rules it must abide by (constraints). The goal is to either minimize or

maximize the objective, � � �. The constraints are equations which bind the employees’

potential schedules, �� � � to meet the given forecast of employee requirements. By formulating

this math program, we can solve to find the optimal schedule allocation.

1.2.2 Formulations

There are many different approaches to solving the scheduling problem, each caters to the

problem at hand, and the specific goals of the manager making the decision. Tien and Kamiyama

[17] write about several algorithms which are common in manpower scheduling. This is based

on the assumption that the general scheduling problem can be divided into five sub-problems or

stages:

• Determination of temporal manpower requirements (forecast the demand)

• Total manpower requirement (how many workers need to work for the company)

• Recreation blocks (number of employees having recreation block t during a

planning period of i days)

• Recreation/work schedule (a function, f which defines the sequence of recreation

blocks to be followed in the worker’s schedule)

• Shift schedule (assigns schedule to each worker)

Katherine M. Perry

7

These steps are the building blocks of a formulation for scheduling. Basically, we must

define the objective and constraints of the particular problem. Every scheduling problem is

unique, and must have its formulation built around these requirements. In their paper, Ernst, et al.

[9] present several different types of staff scheduling and rostering problems. These all center

around finding a solution which minimizes cost while meeting employee/employer preferences,

while satisfying all workplace constraints by allocating staffs to shifts.

Abboud, et al. [1] present a scheduling problem which includes multiple objectives, and

several unknowns. They propose heuristics which are based on genetic annealing (a cross-breed

between genetic algorithm and simulated annealing) and compare by using small scale versions

of their method, integer programming, and metaheuristics. They modeled with three objectives,

as opposed to the common method of optimizing over a single objective. These are:

• Maximize total gross sales goal of all branches in company

• Maximize gross sales of each branch

• Maximize satisfaction of each salesman

Baker and Magazine [3] examine the problem of scheduling which days an employee has off

in a continuous (7-days a week) operation with a variety of day-off policies. Their objective is to

minimize the workforce size (or number of employees) and to construct a feasible schedule for

all employees. They propose an algorithm for specific constraint types. Assume:

• Demand is specified for number of employees required each workday

• Each employee works an average of five days per week

• Cyclical schedule (specify work tours for a single cycle and assume these will

repeat after a period of time)

Katherine M. Perry

8

These are some fairly common assumptions to make about a scheduling problem, but are still

important to clearly define before building the model. The primary contribution that they make is

the solving for the optimal workforce size which meets all of the parameters of the defined

demand profile. They test different workforce situations by consider four different types of

scheduling problems:

Employees are entitled to:

1. Two days off per week

2. Two consecutive days off each week

3. Every other weekend off and two to four days off every two weeks

4. Every other weekend off and two pairs of consecutive days off every two weeks

Each problem focuses on the objective of minimizing the total number of employees while

still meeting demand. Even though the objective remains the same, every one of these types of

problems will result in different optimal solutions because of these small changes in constraints.

This is a simple view of the general manpower scheduling problem, and exhibits just a small

taste of the variation we can find in this field.

Taylor and Huxley [16] discuss in their paper an optimization-based decision support system

for deploying patrol officers. This program consists of three main phases: (1) forecasting, (2)

scheduling, and (3) fine tuning. The scheduling phase is done using objective to minimize the

amount of shortages and then minimize the maximum shortage of any given hour of the week.

This is to keep from having a schedule that generally works well, but has time periods with

severe shortages in staff. Constraints are defined by the forecast created in the first phase. This

Katherine M. Perry

9

formulation is unique due to its complicated objective function. To minimize the maximum (or

to maximize the minimum), one needs to use a more complex method of solving.

Morris and Showalter [14] present computational experience to show how to implement an

application of linear programming which frequently produces an optimal solution to minimizing

the number of labor hours by employees to satisfy the demand constraints of the job. Consider a

continuous operation where there needs scheduling for 24 hours a day and 7 days a week. They

find that it is necessary to use a more integrative tour scheduling formulation than the typical

math formulations. After experiments over varying workforce requirement patterns, they were

able to use a simple heuristic which consistently produced a near-optimal solution.

To schedule library staff at a university, David Ashley [2] models an integer program with

the schedule assignment decision variables:

���� = �1, �� ����� � �� !���" �# $� $%� #��� � #!& ' !$ $�(� �)�$ �
0, �$%��*��� +

���� = �1, �� ����� � �� !���" �# $� �!,�-� � #!& ' !$ $�(� �)�$ �
0, �$%��*��� +

The variables taken into account include:

• !��� = 1 if person � is available on day ' at time �

• ���� = 1 if person � must work on day ' at time �

• #�� = 1 if no one is assigned on day ' at time �

• maximum and minimum desk slots needed to fill for each person

• maximum and minimum backups needed for each time slot

• maximum number of lunch slots allowed for each person

Katherine M. Perry

10

These variables are assigned by solving the minimization problem:

Minimize

..#��
 � �

This objective minimizes the number of slots that do not have anyone assigned to work.

Along with this objective function, all requirements that are assigned based on availability and

needs of people working and on backup are modeled.

Some more complex constraints are taken into account by Love and Hoey [11], who discuss

a microcomputer-based employee scheduling system which takes into account differing

employee constraints including skill-sets, work-time availabilities, and preferences for times to

work while meeting the hourly demand requirements on a day to day basis. Originally taking

over 8 hours to manually prepare employee work schedules each week turned into a short task by

a computer (in 1983). The primary task of the program was to solve the employee scheduling

problem for up to 150 employees.

The technique they chose was to minimize the surplus of scheduled hours (to the demand).

This program proved to save them extensive costs of both time to create schedules and money

that is spent on overstaffing. What is unique about this problem is that most of their employees

are part-time so the model adjusts for preferences.

Katherine M. Perry

11

This objective function looks like this:

Minimize

.�/0�/
 /0

.,���0*���0
."��0���0

 ��0

.#��1��
 �����0

This objective seeks to minimize surplus hours, �, and , reflects skill rating of employee � in

work area) as well as his availability and preference to work given shift ' on given day �. The

values of # are chosen to equalize workdays among employees and consider special cases where

employees are supposed to work a certain number of days. This formulation is for a larger

number of employees with much more complicated constraints then examples previously

mentioned.

Another complex formulation is looked at by Glover and McMillan [10], where they discuss

the shift scheduling problem for telephone operators. The constraints include both full and part

time employees along with shift types that contrast with each other that have the following

attributes:

1. Duration (length of total shift)

2. Start times

3. Number of breaks

4. Placement of breaks

The goal is to find how many employees to schedule for each defined feasible shift for a

given day. This problem uses what we call set covering formulation. This means we have a set

of feasible shifts to choose from, which are developed based on the four parameters stated above.

The general set covering formulation is:

Katherine M. Perry

12

Minimize

2 = . ��
3

 �4�

Subject to:

.!5��� � �5
3

 �4�
, *%��� $ = 1,2,… ,(

�� � 0 & integer

This objective is to minimize the number of employees scheduled, ��, and the constraint is to

satisfy the demand requirements of a single day (number of employees scheduled must be greater

than number of employees demanded).

Two potential objectives are considered by Glover & McMillan [10] for the employee

scheduling problem:

• Minimize overage of employees scheduled to employees forecasted to be needed

• Minimize the “shortage/overage” mix.

This is because the “perfect schedule” occurs when the number of employees assigned to be

working at each time period equals the number forecasted to be needed during that time period.

This is almost always impossible to do, given a fluctuating demand and being constrained by

work schedule requirements. This is why we want to find the smallest difference between these

two variables.

Katherine M. Perry

13

Glover & McMillan [10] go on to integrate more in depth constraints and drop the typical

assumptions of a general employee scheduling problem, such as assuming each employee is the

same and absence of connections across time periods. This is so that it can be applied in more

general circumstances and a wider variety of applications (where these assumptions are not met).

Their formulation:

Minimize

78 = .-9:
 9,:

7; �.19:
.7<&<
 <9,:

Where

78 = a weight to penalize falling below forecasted requirements (shortage of employees)

71 = a weight to penalize exceeding the forecasted requirements (overage of employees)

7< = a weight to penalize falling below the desired

-9: = goal programming deviation variable for falling short of projected demand

19: =goal programming deviation variable for exceeding the projected demand

&< = goal programming deviation variable that allows employee � to work less than =< (the

desired minimum quarter hour periods of work form employee � during the week) periods if

there is not enough work to go around.

By assigning weights, they are able to penalize different situations in the employee schedule

such as preference of consecutive day shifts, employee combinations, etc. They are essentially

minimizing the “cost” which is the sum weights multiplied by their variable outcomes.

Katherine M. Perry

14

Vijay Mehrotra [13] explained that with an increasing demand for call centers in a broad

spectrum of businesses, it is important to look further into the art of call center scheduling.

There is a strong need for properly staffing these call centers to find the best way to satisfy

callers while not overstaffing and having a large number of idle workers just waiting to have a

call to answer. Call forecasting is an integral part of figuring out how to schedule employees, and

this paper claims that the fundamental questions to be addressed are:

• How many calls will we get in a given time period on a given day?

• How many people do we need on staff?

• When and how should these agents be hired, trained, and scheduled?

• What will be the cost?

We can then make proper decision on scheduling. The main goal in call centers is to

maximize the “service level” and in this article – is stressed as our overall objective (as opposed

to minimizing cost or minimizing number of employees). This involved minimizing the

percentage of customers who wait less than some given target time (i.e. 30 seconds) before

reaching an agent. This involves queuing theory and a well-developed forecast.

Assumptions that are often made are:

• Every call is of the same type

• Every agent can handle calls equally fast

• Calls are queued on a first-in-first-out basis

• Call abandonment rates are known and independent of the time a customer spends

waiting

Katherine M. Perry

15

In the end, Mehrotra stresses the importance of operations research in the era of call centers.

Working with developing the correct constraints and basis for each type of call center is quite a

task and varies greatly. These formulations and views of scheduling are just a handful of the

infinite combination of constraints and objectives that are out there for call-center scheduling and

scheduling in general. Every situation is different and the variety of math models proves just

that.

1.2.3 Solution Methods

As demonstrated in the previous section, there are many different types of staff scheduling

and rostering problems. All of these problems center around finding a solution which minimizes

a general cost while meeting employee and/or employer preferences, while satisfying all

workplace constraints by allocating staff to shifts. Ernst, et al. [9] propose five types of solutions

methods:

1. Demand planning

2. Artificial intelligence

3. Metaheuristics

4. Constraint programming

5. Mathematical programming

We will focus mainly on the mathematical programming and heuristic approaches. When the

problem at hand is not computationally complex, the choice is almost unanimous in which is the

best: mathematical modeling. When a math program is feasible and computationally tractable,

we may be confident that the solution returned by an optimization engine is indeed optimal [9].

Katherine M. Perry

16

The reason that there are so many different methods of solving this scheduling problem is

because when the problem gets too large, it is not computationally feasible to guarantee finding

the best solution [9]. Instead, one often must implement various techniques of solving the

equation. Mathematical programming will yield a guaranteed global optimal solution, but may

not be possible to compute. This is when Artificial intelligence, heuristics, and metaheuristics

come into play. These are simply algorithms designed to find a near optimal solution to the

problem, or a “feasible” solution to the problem. A feasible solution is when all the constraints

are met, but the objective is not necessarily the smallest (in a minimization problem) or largest

(in a maximization problem). All this guarantees is that you have a schedule that meets all the

needs described in the problem.

1.2.4 Heuristics

When the problem is too computationally complex, it is important to not only find a

heuristic, but to find one that produces a near-optimal solution. Tien, et al. [17] tested several

algorithms to find the optimal solution and concluded that there are no efficient methods for

solving the general manpower scheduling problems that is such a combinatorial optimization

problem. One method proved to be as, if not more difficult to solve than the traveling salesperson

problem (which is a known NP-complete problem, and is generally assumed to be an unsolvable

problem in polynomial time). When the problem gets to a certain degree, it becomes far too

complex to solve. This tells us how easy it is for a generic manpower scheduling problem to

become too difficult to find an optimal solution to – and it is a necessity to lean towards

heuristics when the problem is too complex. This is just one example of how important the

search for a good heuristic can be in large, complex problems.

Katherine M. Perry

17

Abboud, et al. [1] implemented a heuristic to solve their scheduling problem. They came to

the conclusion that their modified approach of adopted genetic annealing metaheuristic yielded

the best overall results in a situation where all difficulties in manpower scheduling are assessed.

This method allows more uncertainty with the same level of accuracy. Also, Baker and Magazine

[3] found that after attempting mathematical programming to solve their integer program, it was

simply not efficient enough and had to use a heuristic to find a near-optimal solution.

A linear time heuristic was used by Vohra, [18] for the staffing problem which includes the

constraints of having specific breaks during the day. This heuristic’s quality increases as the

requirements for each period become more uniform. So, Vohra was able to identify a new class

of polynomially solvable set-covering problems. Vohra implements the round-off heuristic and

compares it to the Morris and Showalter [14] heuristic and finds that it is not as consistent in

finding a close to optimal solution. However, this heuristic is beneficial because you can find a

decent feasible solution which is very quick and easy to solve. He concludes that this heuristic is

better in the cases when requirements for each period become more uniform.

Morris and Showalter [14] solve this problem using a round-down heuristic and found very

low error with a method that guarantees an optimal solution. This is very rare for a heuristic,

since most only get close to the optimal solution. Unfortunately, this heuristic fails to represent

varying work categories such as team leaders, floaters, and part-timers. So, although they were

able to find an efficient way to find the optimal solution, they were forced to drop some of their

important constraints.

CAPS is a call processing simulator that was developed by AT&T to assess and evaluate

their inbound call centers. They did this because call centers’ growth increased 20% in the 90’s

Katherine M. Perry

18

thus proving to be a substantial investment when it comes to hiring workers for this task and

overall running of the call center [4]. The goal is to minimize the wait time between when a

person calls, and when they are greeted by a call center employee. Based on a study done, the

found that 44% of callers will hang up when faced with a delay of 15 seconds, and 69% would

hang up and not call back after 30 seconds of waiting. This forces the objective of minimizing

call abandonment.

CAPS is used to forecast calls based on simulations and heuristics and among other things is

used to propose optimal staffing. It bases simulations off of average agent talk time, number of

calls offered to center, which are both easily obtainable information, but in addition o that use the

rate and nature of abandonment. This development tool is a type of work-force management tool

that helps with forecasts, plans and schedules. It schedules by the ACD module which flows the

calls in a way that minimizes call abandonment. This means that by using simulation instead of

optimization by linear or integer programming, an effective scheduling program can be modeled

and implemented. This implementation of a simulation and heuristic approach has proved to be

incredibly beneficial for AT&T and this CAPS system was emulated in many businesses

afterwards.

Rottembourg [15] gives an example of specific call center scheduling for the company

“Bouygues Telecom” in France. In this model, he assumes a known number of calls (therefore

do not need to worry about flexibility of forecast). The objective here is to achieve a certain level

of service quality.

Katherine M. Perry

19

They test mathematical programming as well as several types of heuristics:

1. Integer programming (with branch and bound)

2. Insertion based heuristics (typical procedures for vehicle routing problems)

3. Matching and flow algorithms (with fixed schedules – viewing problem as a max-

cost flow problem)

After analyzing these, it was determined that integer programming was the easiest and best

way to add or change constraints without causing problems with answering time and overall

quality of Bouygues’ call center service. This means we get flexibility and a guaranteed optimal

solution.

1.2.5 Mathematical Programming & Column Generation

According to many investigators, mathematical programming is ideal for smaller, less

complex problems. You have the confidence of knowing that any solution it gives you will be

the best possible answer for the given problem. Love and Hoey [11] discussed how their math

program saved them both eight hours of manual scheduling each week, plus the luxury of having

all constraints met without the stress of doing it by hand.

In David Ashley’s [2] scheduling project, he was able to create an easy-to-understand and

easy-to-use technique to schedule library staff. For these reasons, and because of familiarity to

the common manager, Ashley focused on implementing the program in an electronic

spreadsheet: Lotus 123 (similar to Excel). It is modeled to allow for the manager to be involved

in the development of the program such as defining all constraints and different options of time.

It involves a basic linear programming add-in which provides weekly schedules for staffing the

Katherine M. Perry

20

reference and circulation desk at the University of Missouri library. The model solves a

scheduling problem for a work pattern of several different periods.

Functionality and flexibility are key components to this program. There are often more than

optimal solution which means that the constraints are not all tight. If an individual’s availability

changes, a different schedule which fits the new constraint can be easily computed and staff can

be rescheduled.

A very commonly used mathematical model is the integer program set covering formulation

[6]. But, in addition to that, a column generation algorithm is often used before hand to hide

much of the complexity of the problem. This develops a set of feasible schedules, and then a set

covering formulation is used with these options to define the optimal assignment of schedules for

the given forecast. Many applications of staff scheduling can build off of this general

mathematical model which is what makes it so versatile. Some of these are days-off, shift, tour

scheduling, crew scheduling, and crew rostering. So, if the application fits this type of

formulation without becoming too complex, mathematical programming will give the optimal

solution.

Easton and Rossin [7] also utilize the importance of column generation, but instead of

implementing a set-covering mathematical formulation afterwards, they apply a “working subset

heuristic” (SWSLP) to schedule employees. Theoretically, one can use mathematical programs

to schedule employees with the objective to minimize cost while meeting a feasible schedule

with integer variables. However, there are too many possible schedules (potentially millions) that

it becomes too large to optimize using an integer program. This is why a column generating

heuristic is needed. Easton and Rossin’s heuristic is generalized to accommodate both full and

Katherine M. Perry

21

part time employees. This heuristic is careful to not simply generate all possible tours, in order to

make it able to run optimization techniques on it, and through experiments, found that this

heuristic yielded objective values that were indistinguishable from other models which do

generate all feasible tours.

Column generation is very convenient because it makes many problems which were too

computationally complex to solve with just mathematical programming easy to handle. Simply

by generating possible shifts, the math program just needs to pick which of these pre-set

schedules will be used and assign an employee to that shift. We have seen that column

generation can also be used without math programming when the problem is too complex to

even generate all potential schedules. This tool is a helpful tool which can be used in almost all

shift scheduling problems.

1.3 Spreadsheet Optimization

Spreadsheets are used on a daily basis for most business analyses. Although it is not always

the fastest, it is the most widely familiar program which can plug into optimization software.

This is what makes spreadsheets so appealing when it comes to developing a scheduling tool for

a client. Microsoft Excel is likely the most well-known of the spreadsheet world, and is much

less intimidating to a new user. It makes someone who is uncomfortable with new programs

more confident in using this decision support system. The user is used to inputting data for

demand and constraint guidelines and does not have to go through the process of learning how to

use an entirely new program. Additionally, the output is generated in spreadsheet form which is

likely the form that a business employee prefers.

Katherine M. Perry

22

1.4 Microsoft Excel & Visual Basic for Applications

Visual Basic for Applications (VBA) is a program used in Excel that allows you to save

methods and formulations within an excel workbook by simply saving the computer code in

“macros” in the excel file. These can be nicely transformed into “buttons” throughout the

workbook that will run the correct command when clicked. Excel also has the availability of

Excel Solver, an optimization engine add-in that solves mathematical programs. In conjunction

with VBA, a model can be developed which requires minimal effort from the user – simply solve

by the click of a button.

Before being able to jump into modeling the call center scheduling problem in Excel, it is

important to understand how the program really works. This includes how cells are referenced,

conversions of time and date, how calculations are performed and stored, as well as how VBA

works with it. There are several uncommonly known features that need to be noted and taken

into consideration while developing the spreadsheet optimization model:

1. Time conversions

2. Every time has a date stored with it

3. Rounding errors for integer programming

Times are displayed in excel in many different formats, but are all stored in the same way.

The 24 hours of the military clock are represented by the time divided by 24. This decimal is the

time. If you type 1:00 AM, then the computer will store this value as 1/24 = 0.041666667. This

is a repeating decimal and technically continues with 6’s forever. When trying to use times for

Katherine M. Perry

23

calculations, there are often rounding errors. To combat this issue, we can multiply by 24 to

complete all calculations in terms of time. We then use 1 as 1:00 AM, 2 as 2:00 AM, … 13 as

1:00 PM, … and 24 as midnight. This is important in the generation of schedules and eliminates

the issue of rounding errors and after finished with all calculations can be divided by 24 again –

thus giving the cell the correct time format once more.

In addition to this, it is possible to have 1:00 PM and 1:00 PM not equal to the same value.

This is because a date is always stored with the time. If the time is typed, the date associated is

always 1/0/1900. This is the default day, so when using the excel function that imitates a pattern

(continues with the sequence 1:00 AM, 2:00 AM, … 11:00 PM, 12:00 AM,…) when the time

moves past midnight, the date increased to 1/1/1900. This means that the stored value for 1:00

AM is now 1.046666667. This becomes a huge problem when it comes to comparing values and

seeing if two values match. This is not an error, but something to be aware and cautious of while

building the spreadsheet tool.

The last item that is important to take into account is that when Excel Solver finds optimal

solutions for integer programs, the solutions are often valued at a decimal that is off of being an

integer by a tiny bit, i.e. 1.0000000000000000000001 instead of 1. This is an unimportant

difference that is considered arbitrary. Since this tiny discrepancy can occur, it is important to

account for this tiny value while using logic questions such as greater than, less than, or equal to.

To adjust, we can set an epsilon value, ε = .00000001. This arbitrary epsilon is implemented as

follows:

• Instead of comparing “is cell A1 <= 1:00 PM”, we check “is cell A1 <= 1:00 PM + ε”

• Instead of comparing “is cell A1 >= 1:00 PM”, we check “is cell A1 + ε >= 1:00 PM”

Katherine M. Perry

24

• Instead of comparing “is cell A1 = 1:00 PM”, we check “is cell A1 <= 1:00 PM + ε”

AND “is cell A1 + ε >= 1:00 PM”

This implementation is needed throughout the spreadsheet to adjust for any rounding errors

that could occur. As long as these tendencies are kept in mind, it should not be hard to produce a

flawless optimization model within Microsoft Excel.

1.5 Overview

In the following sections, we will look into an application of the call center scheduling

problem, its implementation, and goals. Chapter 2 describes the original scenario which brought

this problem to fruition for this paper. Also, we will see what drives the need for a call center

scheduling tool and what outcomes we aim to improve. Next, we will discuss the methodology

of the entire project. This includes the approach to developing the math program, how it is

implemented into the spreadsheet, and how each piece of the spreadsheet operates and interacts

with one another.

After describing the full formulation and implementation in chapter 2, we move on to

evaluate the performance of the scheduling tool in chapter 3. Here, we will discuss which metrics

are to be evaluated: the estimated understaffing of employees per half hour period and amount of

time taken to find a working schedule. This section proves that developing an optimization

program will benefit the user by coming closer to meeting metric goals as well as saving over 14

hours of work for the scheduler while removing almost all manual involvement required. The

only work necessary is to simply input the number of employees and the time spacing of breaks,

Katherine M. Perry

25

run the program, and forget all the hassle of trying to match up schedules to fit the forecast while

the program outputs the ideal schedule.

Katherine M. Perry

26

Chapter 2: Integer Programming Formulation and

Spreadsheet Implementation

2.1 Statement of problem

The problem of developing an employee scheduling tool came from a client who schedules

call center employees based on a 30-minute period forecast. His wishes were to find a faster,

more efficient way of scheduling his employees, and to hopefully be able to have better

performance outcomes for the call center as a result.

The following information was given to us:

• The call center is open Monday through Friday from 8:00 AM to 8:00 PM

• Calls are reported per 30-minute period of the day and this information is used to

define the necessary number of employees needed on the phones for each period

• There are 20 total employees: sixteen 8-hour employees and four 10-hour

employees

• 8-hour employees work 5 days a week

• 10-hour employees work only 4 days a week

Katherine M. Perry

27

• All employees get two 15-minute breaks during the day: one before lunch, and

one after

• 8-hour employees get 30 minutes for lunch

• 10-hour employees get 1 hour for lunch

• The amount of time between start of the day, break 1, lunch, break 2 and end of

the day are as follows:

Table 2.1: List of parameters for break times as specified by the client. We will refer to this set
of parameters as the restricted scheduling pool.

 8-hour

employees

 10-hour

employees

 Min time Max time Min time Max time

Time from start of

day to break 1

1 hour 30 min 2 hours

1 hour 30 min 3 hours

Time from end of

break 1 to lunch

1 hour 30 min 2 hours

1 hour 30 min 2 hours

Time from end of

lunch to break 2

1 hour 30 min 2 hours

1 hour 30 min 2 hours

Time from end of

break 2 to end of

day

1 hour 30 min 2 hours

1 hour 30 min 3 hours

The problem at hand is that we need to make sure that the demand for employees at each

time period is met, while still meeting all of the parameters listed above. Doing this manually is

very difficult and time consuming, which much room for human error. This is why developing a

tool that solves it electronically is a necessary tool.

Katherine M. Perry

28

2.2 Benchmark Goals for the Call Center

The drive behind scheduling the correct number of employees at each time period is to

improve service levels. This includes having a call abandonment rate of less than 5%, having an

average answer speed less than 45 seconds, and having 80% of the calls answered in 40 seconds

or less. The call center manager has decided that the best way of reaching these goals is creating

a demand schedule which is based on average number of calls per time period. These average

calls are the same for each time period throughout the week, and are converted into number of

employees needed. We calculate this based on the statistic that one employee can complete an

average of 3.7 phone calls per 30-minute time period. So the average number of calls divided by

3.7 is the estimated number of employees needed. After a schedule is created, we assess the

metrics for accuracy, discussed in detail later.

For the purpose of familiarity and ease, we want our main interface to be Microsoft Excel.

From here, we want to use an optimization engine that is easily attainable, and does not cost

money for the client or others who may use the tool. The tool was originally built using Excel

Solver, but later found that using a more advanced one is more beneficial. We will learn more

about this additional optimization engine later in this paper. By keeping everything in the same

automated Excel file, we save an enormous amount of time, effort, and stress when it comes to

solving the scheduling problem.

Katherine M. Perry

29

2.3 Methodology

2.3.1 The Integer Program – Set Covering

Set covering is the math modeling method we use when we have a set of candidate schedules

(all the feasible schedules we generated previously) and we assign these schedules to cover a

particular requirement – which is the forecast. This means that for every forecast that is put in

(every 30 minute period), we must have at least the required number of employees working.

This way we will never be understaffed. The list of potential schedules is created before solving

the program and is based on the parameters defined by the user (breaks, lunches, time periods

between them, etc…).

With this list of all potential schedules, we run the set covering mathematical model to

choose the optimal combination of schedules to satisfy the defined objective. After discussion

with the client, we decided that his goal is to utilize all current employees in the best way

possible. After thinking over several possible formulations, it was decided that the most

appropriate objective would be:

• Minimize the sum of staff scheduled above demand for each 30-minute period

This means that every time we have more employees scheduled to answer calls than defined

as needed, which will be added to the objective value. So, when this is done for each time period

for each day of the week, we are finding the sum of all overstaffing. We also considered another

objective to determine if savings were possible through a reduction in staff.

• Minimize the number of employees who must be assigned a schedule

Katherine M. Perry

30

This objective function gives freedom to the number of 8 and 10 hour employees who are

scheduled. It will test to see if we have more employees employed than necessary to cover the

given forecast. This gives visibility to any need for layoffs and saving money by employing

fewer people.

2.3.2 The Model

The formulations of the two objective functions are quite different from one another;

however, the constraints remain nearly identical. The full models are shown below and are used

after already generating the list of all possible schedules.

Let T be the set of all 30 minute time periods starting at 8:00 and ending at 19:30. Let D be

the set of workdays that the call center is open, Mon-Fri. Let F be the set of all potential 10-hour

schedules, and P be the set of all potential 8-hour schedules. Let Fw be the set of 10-hour

schedules with day � off for > ? . This is also known as F x D. For each schedule created, we

define whether or not the employee j is working at each time period t by two binary variables:

�5� = �1, �� 10 @ %�-� �(�)�&�� �,%�#-)� ' > A !1!�)!�)� ��� $�(� $ > B
0, �$%��*��� +

�5� = �1, �� 8 @ %�-� �(�)�&�� �,%�#-)� ' > D !1!�)!�)� ��� $�(� $ > B
0, �$%��*��� +

Let the demand of employees be represented by rtk, where rtk is the number of employees

needed at time $ > B on day � > ?. Then let m be the number of 10-hour employees available to

be scheduled and n be the number of 8-hour employees available to be scheduled.

Katherine M. Perry

31

The integer program contains two sets of decision variables. Let

�� = number of 8‐hour employees working schedule i Y i > D

&�� = number of 10‐hour employees working schedule j with day k off Y ' > A, � > ?

Formulation of Objective 1: Minimize the sum of staff scheduled above demand for each

30-minute period

The goal of this is to use all employees and fit the best overall staff schedule to the forecasted

needs. Instead of just covering the forecast, it will make sure we have the best cover possible:

this is to minimize the overstaffing for all periods.

Minimize

.] ^ . �5���
�>_: 9ab4�

 . �5�&�0
�,0>cd:�e� f gab4�5,�>hij

k @ �5�l ^1k

Subject to:

Y$ > B, Y� > ? . �5���
�>_: 9ab4�

 . �5�&��
�,�>cd:�e� f gab4�

� �5� ^2k

 . &�0
�,0>cd

= (^3k

.��
�m_

= ^4k

&�0 � 0 & integer ^5k
�� � 0 & integer ^6k

Katherine M. Perry

32

Formula (1) is the objective function. The equation is to minimize the sum of the difference

between number of employees scheduled and number of employees forecasted for all time

periods. Breaking down the equation, we see that we want to find the sum of all 8 and 10 hour

time periods that have an employee working at that time interval and subtract the number that is

demanded to be working at that time period. Then, we want to sum over every time period

difference calculated.

The constraints are formulas (2)-(6). These are he rules that determine what the decision

variables can look like at our solution. Formula (2) is the constraint to cover the defined forecast.

The equation requires that for each time interval on each day, the sum of all 8-hour employees

plus the sum of all 10-hour employees on the phone must be greater than or equal to the forecast.

Formula (3) requires that all 10-hour employees be utilized. The equation reads that the sum of

all employees assigned to a 10-hour schedule must be equal to the number of 10-hour employees

available. Formula (4) is similar to formula (3), but for 8-hour employees. It requires that the

sum of all employees assigned to an 8-hour schedule must be equal to the number of 8-hour

employees available. Equations (5) and (6) are to define the decision variables as non-negative

integer values. This is to make sure we do not have any fractional or negative answers.

Formulation of Objective 2: Minimize staff size

The goal of this is to only look at the forecast, and shows how small of a staff can be

employed in order to meet the forecast. This still meets all parameters set, but sees how much

better it could be.

Katherine M. Perry

33

Minimize

. ��
 . &��
�.� >cd

 ^1k
� > _

Subject to:

Y$ > B, Y� > ? . �5���
�>_: 9ab4�

 . �5�&��
�,�>cd:�e� f gab4�

� �5� ^2k

. &��
�,�>cd

� (^3k

.��
�m_

� ^4k

&�� � 0 & integer ^5k
�� � 0 & integer ^6k

Formula (1) is the objective value of the formulation. The expression is to minimize the

number of 8-hour and 10-hour employees scheduled to work during the week. The equation

reads to simply add up all employees scheduled for 8-hour shifts and add up all employees

scheduled for 10-hour shifts. The sum of these two is what we are trying to minimize. The

constraints of this formulation are very similar of that for the formulation of objective 1. Formula

(2) still require that for each time interval on each day, the sum of all 8-hour employees plus the

sum of all 10-hour employees on the phone must be greater than or equal to the forecast.

 The difference is found in constraints (3) and (4). Since our objective is to schedule as few

employees as possible, we now only require that the number of 10-hour employees be less than

or equal to the number of 10-hour employees available. The same is shown in formula (4): the

sum of all employees assigned to an 8-hour schedule must be less than or equal to the number of

Katherine M. Perry

34

8-hour employees available. Again, equations (5) and (6) define the decision variables as non-

negative integer values.

2.3.3 How the Tool Works

The spreadsheet is all inclusive and works as input, solver, and output for the optimization

problem. This means we never have to worry about moving things from program to program,

and keeps it neat and tidy. It consists of eight sheets which vary between inputs, calculations, and

outputs. It consists of eight sheets which are located at the bottom and are identified in the tab.

They are either user input tabs or calculation tabs. User input tabs are ones which need to have

information put into them by the user, and calculation tabs are ones which are not to be changed,

since they are strictly for use by the macros.

Actual Calls – This user input tab is the sheet where actual calls per 30-minute period per

week can be input and then the spreadsheet calculates the average number of calls per 30-minute

period. This calculated average is used to calculate demand in the program.

Format – This sheet is a calculation tab which requires no data input, but only a macro

selection by the user. It draws the average calls from the “Actual Calls” tab and rounds the

values into whole numbers to be used in the math program. Here, we have several choices of

whether we want to round up, round down, or just round normally. This gives us better options

if parameters do not allow for a feasible solution to be found. This would only happen because

there is no combination of schedules that can cover the forecast that was defined, so we must try

to use a different demand schedule. For instance, if using the “round up” numbers brings an

error, we can use either “round” or “round down” because there is a chance that these will come

Katherine M. Perry

35

up with solutions. Above each column is a button to choose that rounding function as the

demand. Simply press the gray button to choose your demand.

Also, built into this tab is an option to account for vacancy in the original demand. This is

based on the estimate that on any given day, 75% of scheduled employees will not show up for

some reason. Here, you can select the demand to be based on the number of employees needed

divided by 0.75. This means if a feasible solution exists for number of employees demanded with

vacancy, all of the staff gap with vacancy will show full coverage.

Demand – This calculation tab is here strictly for use by the macro for optimization. Nothing

is needed to be done by the user here. This is where the selected demand is put and later

extracted by the program.

Parameters – This user input tab has the options to choose the following parameters:

1. Number of 8-hour employees

2. Number of 10-hour employees

3. Maximum and minimum time between start time and break 1 for both 8 and 10-

hour employees

4. Maximum and minimum time between break 1 and lunch for both 8 and 10-hour

employees

5. Maximum and minimum time between lunch and break 2 for both 8 and 10-hour

employees

6. Maximum and minimum time between break 2 and end time for both 8 and 10-

hour employees

Katherine M. Perry

36

These parameters are the cells colored in gray. None of the other cells should be messed with

– they are for the program to use in schedule generation.

This sheet also contains the three main macros. These will be described in detail in the next

section, they are:

1. Generate Schedules

2. Optimize

3. Minimize Staff Size

Schedules – This is the sheet where all possible schedules are input. This is not to be changed

by the user. It is where the macro places schedules.

Detailed Schedules – This is another sheet involved strictly in the macro calculations and

optimization. It contains a binary description of the schedules, and contains the cells in which the

optimization program minimizes over. These binary schedules correspond to the parameters ���

and ��� in the model previously discussed in section 2.4.2 where i corresponds to the rows

containing 10-hour schedules, j corresponds to the rows containing 8-hour schedules, and t

corresponds to the columns with 30-minute periods. To the right of the schedules, it shows the

number of employees on schedule for each time period on each day, the number of employees

defined by the demand for each time period on each day, and finally it calculates the difference

in number of employees working and the number needed (the objective function for objective

#1).

Final Schedule – This sheet is for the user to get a good visual of the actual schedules. It

identifies each schedule by fifteen-minute period (which was requested by the original client),

and identifies 8 or 10-hour employee as well as what day the 10-hour employees have off. This is

Katherine M. Perry

37

designed in the original format the call center manager used before any automation was done.

This page is important mostly for its ease of reading schedules and its aesthetics.

Gap Analysis – This determines the accuracy of our schedule in terms of call-center metrics.

This compares the estimated metric results based on different schedules. It gives visibility of

which schedule combinations result in better service. The basis of these calculations is described

in the experiment chapter.

2.3.4 Macros

In order to minimize the work the user must do, there are three macros which have been

created. They do all of the work necessary with just the click of a button. Some basic

descriptions of what they do are:

Generate Schedules – This creates a list of every schedule possible that follows all

parameters of minimum and maximum time between start, breaks, and lunches for 8 and 10-hour

employees. This is the preparation step in the optimization process. The schedules which it

produces are the variables involved. This is typically the longest time commitment and will

continue until every possible schedule has been documented. It also checks to make sure that no

formulas have been messed up or deleted within the worksheet. More specifically, it checks to

make sure the length of time between the end of break 2 to the end of the day meets the

parameters defined by the user. This is necessary because the way the macro is built to generate

schedules, it builds all feasible schedules up to the last parameters, then must look back and

remove those which aren’t correct. Also, this macro re-prints all formulas which are found in the

“Detailed Schedules” and “Schedules” sheet. This guarantees that the optimization model will

still work properly even if formulas had been accidentally changed by the user.

Katherine M. Perry

38

Optimize – This macro will input the first math model into the optimization engine and run

the program. If an optimal solution is found, then it will neatly print the optimal schedule into the

“Final Schedule” tab as well as insert the right data into the “Gap Analysis” tab and calculate the

metrics.

Minimize Staff Size – This macro is very similar to the “Optimize” macro, but will input the

second math model into the optimization engine. If an optimal solution is found, it will print the

resulting schedule in to the “Final Schedule” and again input data into “Gap Analysis” and

calculate metrics associated.

This combination of macros is important to understand. For any set of minimum and

maximum parameters, the “Generate Schedules” tab only needs to be run once. As long as those

parameters remain the same, the user can change number of employees and run either math

program: “Optimize” or “Minimize Staff Size” without having to reproduce potential schedules.

This is important in terms of efficiency since one does not have to continually wait for schedules

to be generated. With the restricted scheduling parameters from table 2.1, it only takes less than

20 seconds to generate schedules, but depending on the number of schedules that can be created

by the defined set of parameters, it could take over an hour to produce all the schedules. Not

having to reproduce this step each time the program is run is crucial for efficiency.

2.3.5 Implementation Challenges

This work is an extension of a class project for OPER 639 Practical Optimization. The

macros for the project spreadsheet had less functionality and produced erroneous and poorly-

formatted output. The deficiencies of the project implementation prevented deployment. One

error was that the parameters for time between breaks were not satisfied by candidate schedule.

Katherine M. Perry

39

It quickly became apparent that the tool was not following these constraints in the schedule

generation step and was completely ignoring the parameter to choose the time between break 2

and the end of the day. Additionally, the time between breaks were based on the beginning of

breaks and the beginning of lunches. Doing so will shorten the minimum time between breaks by

however long the first break is. For example, if lunch is at 12:00 and the minimum time between

is 1 hour 30 minutes, then the scheduling tool would allow break 2 to begin at 1:30. This means

there is only a 1 hour break between the end of lunch and the beginning of the next break, thus

being an infeasible schedule.

Another error in the original tool was that it was taking too long to generate schedules. This

was due to the large amount of formulas that were changing within the spreadsheet. By

strategically placing automatic calculations to manual within the macro code, we can increase the

speed without losing any important calculations in the process. Generating schedules for the

restricted scheduling parameters (table 2.1) took approximately 10 minutes to finish, and this

time was shaved down to approximately 10.5 seconds after manipulating when calculations are

automatic and when they are manual.

Throughout the spreadsheet, there were multiple small errors including logic mistakes in

formulas, rounding errors, and ranges that did not extend far enough, which were simple fixes

and just required identifying that there was an issue in the first place. The last big problem

occurs when more than 200 potential schedules are created. The problem is that Excel Solver can

only optimize over 200 variables. So, when parameters are broadened, the program cannot be run

without deleting some of the schedules – thus losing the guarantee that the program will find the

optimal solution. To combat this issue, a new optimization engine needed to be implemented.

Katherine M. Perry

40

OpenSolver is an open source Excel plug-in which does not have bounds on number of

variables which makes it the perfect solution for this problem [12]. Installing the program is not

difficult and can be permanently kept in Excel as an add-in (see appendix for instructions). Only

small changes to the macros are necessary when switching to OpenSolver which made for a

smooth transition.

Now, with a fully functional program that we can rely on to produce correct schedules, it is

important to focus on ease of use and convenience for the user. This means we want the inputs

to all be in simple formats and the output to be in a format that mimics that of a real schedule.

Although these things are nonessential for solving the model, it is incredibly important for the

client to have a readable interface. This tool was created specifically to align with all current

data for demand inputs as well as output of the schedule and calculating metrics. On the front-

end, the input data for number of calls per time period keeps original format and automatically

calculates averages, sends these numbers to the demand input and allows for easy selection of the

proper demand to use for optimization. Inputting the parameters for number of employees and

time periods between breaks is also very easy to use and requires no further effort than simply

typing the information in the proper boxes. On the back-end of the tool, the schedules are

formatted in the original client spreadsheet layout for an easy view by the client as well as all

managers that need to make sure the schedule is being followed by employees. It also

automatically calculates all metrics that are wanted by the client, so no further analysis is needed

on his part. Having a constant view of this is very beneficial. The effort put in to formatting the

input and output functions of the tool is well worth it because it means that the client does not

need to adjust his current practices to implement the scheduling tool. Having a familiar interface

is very important for a smooth transition into the business.

Katherine M. Perry

41

Chapter 3: Empirical Evaluation of Spreadsheet

Scheduling Tool

3.1 Schedule Metrics

In comparing methods of generating schedules, we want to look at final metric calculations

(found in the “Gap Analysis” tab) as well as the length of time it takes to solve. The metric we

look for in Gap Analysis is called the normal staff gap. It is the difference between demand and

number of employees that are working at the 30-minute time period. This will define which

schedule sets are better than others. The goal is to have more employees than demanded for each

time period.

The normal staff gap should always be negative, since the math program requires the number

of employees scheduled be greater than the number of employees demanded at every time

period. However, there is a general rule of thumb that on any given day, there is a 25%

employee vacancy. This is when an employee is scheduled to come to work, but does not show

up at the last minute. Basically, it is an unexpected absence (not including vacations, holidays, or

planned time off). This is vital to calculations of metrics because we want to be able to cover the

calls for these vacant employees.

Katherine M. Perry

42

So, to calculate the normal staff gap while accounting for vacancies, we need to divide the

number of employees scheduled and multiply by 0.75. This will give us the estimated number of

employees that will be working at any time period. Now, we find the difference in number of

employees scheduled with vacancy and number of employees demanded. This is what we really

want to compare.

3.2 Comparison

Here, we will see how much better using the new spreadsheet model really is. We will

examine the two main areas for improvement:

1. Normal Staff Gap (with and without vacancy)

2. Time it takes to create schedules

With improvements in these two areas, we have addressed our core goals of ease, efficiency,

and accuracy.

3.2.1 Normal Staff Gap

Average normal staff gap is the average difference in number of employees demanded and

scheduled. A negative number is desirable, meaning that the number needed is less than that

available. Maximum staff gap is the maximum difference in employees demanded and

scheduled over all time periods.

Average staff gap with vacancy is the average difference in number of employees demanded

and scheduled including the 25% vacancy. Again, negative numbers are desirable, which this

Katherine M. Perry

43

means there are on average more employees scheduled than demanded per time period. The

maximum staff gap with vacancy is the maximum difference in employees demanded and

scheduled over all time periods while taking into account 25% vacancy. The metrics with

vacancy accounted for are the most important ones to compare, because they are the most likely

outcomes.

Gap Analysis Metric coloration:

To increase visibility of how well the schedule meets the goals, the cells have a color coded

circle to the left of the value. They are either red, yellow, or green – and the “very red” category

is a subset of the red and means the value is positive and thus we have fewer employees working

than demanded for the given time period. Very red is the only color which indicates a complete

miss in scheduling employees:

Red – Danger – staff gap is less than or equal to 0.0 and greater than -0.5

Yellow – Warning – staff gap is less than or equal to -0.5 and greater than -1.0

Green – Good – staff gap is less than or equal to -1.0

Very Red – Understaffed – staff gap is greater than 0

We will compare three scheduling plans:

1. The manual scheduling plan created by the call center manager

2. The automated scheduling plan using comprehensive scheduling pool

3. The automated scheduling plan using restricted scheduling pool

Katherine M. Perry

44

The manual plan (1) is the scheduling plan created by the call center manager which sparked

the need for this scheduling tool. It was created to meet certain parameters, but had to break

some of the rules of how long employees must work between breaks. Our goal is to improve the

metrics that came from this schedule. In order to compare how using this automated scheduling

tool will be more effective than manually, we needed to assess the parameters that were actually

used in the manual scheduling plan. The lengths of time between breaks by the manual schedule

were sometimes shorter and sometimes longer than what was requested for this program.

The automated scheduling plan using comprehensive scheduling pool (2) is the plan which

implements the same time parameters as the manual scheduling plan (1), but is scheduled by

using the optimization program. The automated scheduling plan using restricted scheduling pool

(3) is the set of parameters which were requested by the client while being introduced to this

problem (refer to table 2.1). The differences in the minimum and maximum times between

breaks for both 8 and 10 hour employees can be seen in the tables below:

Katherine M. Perry

45

Table 3.1: Parameters of comprehensive scheduling pool (plans 1 & 2) vs. parameters of
restricted scheduling pool (plan 3) for 8-hour employees. Note that the parameters that were
originally used for scheduling were much wider than what he asked for the times to be. This
means there is a lack of uniformity and creates longer lengths of working without any break.

 Parameters of comprehensive

scheduling pool

Parameters of restricted

scheduling pool

8-hour employees Minimum Maximum Minimum Maximum

Time from start of

day to break 1

1:30 3:00 1:30 2:00

Time from end of

break 1 to lunch

0:30 3:45 1:30 2:00

Time from end of

lunch to break 2

1:00 4:00 1:30 2:00

Time from end of

break 2 to end of

day

1:00 2:30 1:30 2:00

Table 3.2: Parameters of comprehensive scheduling pool (plans 1 & 2) vs. parameters of
restricted scheduling pool (plan 3) for 10-hour employees. Again, these originally used
parameters are much wider than what is wanted. It shows that employees can work over 4 hours
without getting a break.

 Parameters of comprehensive

scheduling pool

Parameters of restricted

scheduling pool

10-hour employees Minimum Maximum Minimum Maximum

Time from start of

day to break 1

1:00 2:00 1:30 3:00

Time from end of

break 1 to lunch

1:30 4:30 1:30 2:00

Time from end of

lunch to break 2

1:00 3:00 1:30 2:00

Time from end of

break 2 to end of day

1:00 4:00 1:30 3:00

Katherine M. Perry

46

As we can see, in the case of both 8 and 10 hour employees, the parameters has much smaller

minimum break times and larger maximum break times for scheduling plans (1) and (2), where

scheduling plan (3) will be the benchmark set of parameters as requested by the client.

On top of using different parameters for time between breaks, the client sometimes had the

human error of giving too many breaks as well as setting the end time 15 minutes too late in the

manual scheduling plan. His errors in breaks and length of work day have been adjusted for

accurate comparison.

The manual scheduling plan (1) completed by the client yielded the following:

 Average Normal Staff Gap: -2.62

 Max: 0.86

 Number of time periods in the red: 3

 Number of time periods in the yellow: 3

 Number of time periods in the green: 18

 Number of time periods in the VERY red (positive): 3

Average Staff Gap w/ Vacancy: 0.46

 Max: 4.36

 Number of time periods in the red: 16

 Number of time periods in the yellow: 0

 Number of time periods in the green: 8

 Number of time periods in the VERY red (positive): 15

Using the scheduling tool, the automated scheduling plan using comprehensive scheduling

pool (2) yielded the following metrics:

Katherine M. Perry

47

 Average Normal Staff Gap: -2.62

 Max: -1.14

 Number of time periods in the red: 0

 Number of time periods in the yellow: 0

 Number of time periods in the green: 24

 Number of time periods in the VERY red (positive): 0

 Average Staff Gap w/ Vacancy: 0.46

 Max: 2.86

 Number of time periods in the red: 16

 Number of time periods in the yellow: 6

 Number of time periods in the green: 2

 Number of time periods in the VERY red (positive): 11

These parameters created 847 potential schedules, which is over 6 times the number of

potential schedules that are created in the next run. Using the automated scheduling plan using

restricted scheduling pool we get the metrics:

 Average Normal Staff Gap: -2.62

 Max: -0.14

 Number of time periods in the red: 2

 Number of time periods in the yellow: 2

 Number of time periods in the green: 20

 Number of time periods in the VERY red (positive): 0

Katherine M. Perry

48

 Ave Staff Gap w/ Vacancy: 0.46

 Max: 3.61

 Number of time periods in the red: 16

 Number of time periods in the yellow: 3

 Number of time periods in the green: 5

 Number of time periods in the VERY red (positive): 15

Looking at Table 3.3, below, we will compare the maximum staff gap, number of green,

yellow, red, and very red time intervals across all three scheduling plans. We want to see the

maximum staff gap to be low, green count to be high, and red/very red to be low.

Table 3.3: Comparison of scheduling plans using metrics and outcomes (not accounting for
vacancy).

Solutions not

including

vacancy

Manual

scheduling plan

(1)

Automatic scheduling plan

using comprehensive

scheduling pool (2)

Automatic scheduling

plan using restricted

scheduling pool (3)

Max Staff Gap 0.86 -1.14 -0.14

Green Count 18 24 20

Yellow Count 3 0 2

Red Count 3 0 2

Very Red Count 3 0 0

Checking the number of employees scheduled to work, we find that the best situation is when

we adapt the original parameters to the scheduling tool (scheduling plan 2). This gives us a

perfect schedule where all 24 time periods are green and we have the most negative max staff

gap. The staff gap of -1.14 means that time period that comes closest to understaffing is still

estimated to be overstaffed by 1.14 employees. The manual scheduling plan has a max staff gap

Katherine M. Perry

49

of 0.86 which means that there is a time period where the call center is understaffed by

approximately 0.86 persons. What is most interesting about this is that we can still get much

better outcomes by using restricted scheduling pool than by the manual scheduling plan. All time

periods are covered completely with no “very reds.” This means that no time period is estimated

to be understaffed. Next, we will look at Table 3.4, below, to see how the metrics look after

taking into account the expected employee vacancy (as mentioned in section 3.1).

Table 3.4: Comparison of scheduling plans using metrics and outcomes while taking into
account vacancy (assuming 25% will not show up for work).

Solutions with

vacancy

Manual

scheduling plan

(1)

Automatic scheduling

plan using comprehensive

scheduling pool (2)

Automatic scheduling

plan using restricted

scheduling pool (3)

Max Staff Gap 4.36 2.86 3.61

Green Count 8 2 5

Yellow Count 0 6 4

Red Count 16 16 16

Very Red Count 15 11 15

Looking at the same metrics as in Table 3.3, we find the same general results. The automatic

scheduling plan using comprehensive scheduling pool (2) gives us the best results across the

board. It has the lowest max staff gap of 2.86 and the lowest number of “very reds.” This means

that it has the fewest time periods where employee demand is not met. The second best

scheduling plan is the automatic scheduling plan using restricted scheduling pool (3) with a max

staff gap of 3.61 employees, and the worst option is the manual scheduling plan (1) which had a

max staff gap of 4.36. This means that one of the time intervals is estimated to be understaffed

by over 4 employees.

Katherine M. Perry

50

Using the scheduling tool is guaranteed to give the same or better solutions than manually

given the same parameters. Also, we find that the broader the range of minimum and maximum

times between breaks, the better the metrics will be. This is based on the fact that scheduling

plan (2) has better outcomes than scheduling plan (3). Having broader parameters creates a

better solution because there are more variables (potential schedules) to be taken into account,

thus giving more options for a final schedule.

3.2.2 Run-time Comparison

The original tool was built and used the optimization software Excel Solver, which is add-in

that is commonly used for optimization. After trying a new optimization engine, OpenSolver, we

found that it significantly decreased the time elapsed for an optimal solution to be found.

The manual scheduling plan completed by the client took approximately 1 week off and on to

build by hand. When asked to estimate number of hours spent on strictly developing and

assigning schedules, the client estimated at least 15 hours.

With the new optimization tool with OpenSolver using the comprehensive scheduling pool, it

took approximately 19 minutes, 30 seconds to solve (16 minutes to generate schedules and 3

minutes 30 seconds to find optimal solution). This produced 837 potential schedules, so this set

of parameters could not be completed using the original tool’s Excel Solver because it yielded

too many potential schedules. Excel Solver can only handle 200 variables, so any set of potential

schedules that exceeds this cannot be completed with this add-in.

When running the scheduling tool with OpenSolver using the restricted scheduling pool, it

yields a run-time of 25.2 seconds (10.5 seconds to generate schedules and 14.7 seconds to find

optimal solution) and produced 134 potential schedules. Since these parameters produced less

Katherine M. Perry

51

than 200 potential schedules, we are able to compare the run time of OpenSolver to that with

Excel Solver.

Using the restricted scheduling pool and Excel Solver, we get a run time of 2 minutes, 34

seconds (11.4 seconds to generate schedules and 2 minutes 23 seconds to find optimal solution).

It still yields the same 134 potential schedules.

Table 3.5: Comparison of run time for client (by hand), OpenSolver, and Excel Solver for both
sets of parameters, the parameters from the restricted scheduling pool and the parameters from
the comprehensive scheduling pool.

 Client Time OpenSolver Excel Solver

Comprehensive
scheduling pool

15+ hours 19 minutes, 30
seconds

n/a

Restricted scheduling
pool

15+ hours 25.2 seconds 2 minutes, 34 seconds

We see that by using this tool we can cut scheduling time down by hours and requires

minimal effort by the user. Also, OpenSolver proves to be better in terms of speed as well as

versatility, since it can handle any number of potential schedules, as opposed to Excel Solver

which can only handle up to 200 schedules.

3.3 Conclusions

Automating the scheduling process into an optimization engine is beneficial for anyone who

is responsible for scheduling employees. This spreadsheet program has proven to yield better

Katherine M. Perry

52

metrics, shorten time spent creating schedules, and guarantee the best solutions which follow all

rules defined in the parameters. This eliminates the issue of human error when creating by hand.

Aside from finding the best solution, it is incredibly easy to use and easy to adjust. The user

gets flexibility in setting number of employees and time spacing requirements between breaks.

Other constraints are not as easy to adjust but certainly possible, such as length of breaks and

number of breaks. The custom output which caters to the needs of the original client is nicely

formatted and a good view for any manager that wishes to use it. The benefit of using this tool

far surpasses the costs – which are only the time it takes to install and learn. There are no costs in

any of the add-ins used as long as Microsoft Excel is available. The tool is fast, easy, and

contained in one excel spreadsheet to eliminate any confusion with multiple files. Custom

programs for optimization such as this are become a vital part of the world today as decisions

need to be made quickly, so that people can move onto other matters. Using this tool, we are

able to decrease the amount of time to create schedules from approximately 15 hours of manual

work to 25.2 seconds. When scheduling employees manually, it is easy to allow understaffing to

slip through the cracks. Now, we are able to improve the accuracy of meeting the forecast –

guaranteeing all manpower demand is met. This scheduling tool has proven the benefits of

analyzing current practice of call center scheduling and implementing a fast, accurate, and

reliable optimization program.

Katherine M. Perry

53

References

[1] Abboud, N., Inuiguchi, M., Sakawa, M. Uemura, Y. (1998) Manpower Allocation Using
Genetic Annealing. European Journal of Operational Research, 111, 405-420.

[2] Ashley, David. (1995) A Spreadsheet Optimization System for Library Staff Scheduling.

Computers Operations Research, 22 No. 6, 615-624.

[3] Baker, K. & Magazine, M. (1977) Workforce Scheduling with Cyclic Demands and Day-off

Constraints. Management Science, 24 No. 2.

[4] Brigandi, A., Dargon, D., Sheehan, M., Spencer, T. III. (1994) AT&Ts Call Processing

Simulator (CAPS) Operational Design for Inbound Call Centers. Interfaces, 24 No. 1, 6-
28.

[5] Caprara, A., Monaci, M., Toth, P. (2003) Models and Algorithms for a Staff Scheduling

Problem. Mathematical Programming, 98, 445-476.

[6] Dantzig, George. (1954) Traffic Delays at Toll Booths. Journal of the Operations Research

Society of America, 2 No. 3, 339-341.

[7] Easton, F., Rossin, D. (1991) Sufficient Working Subsets for the Tour Scheduling Problem.

Management Science, 37 No. 11, 1441-1451.

[8] Eksioglu, S., Seref, M., Ahuja, R., & Winston, W. (2011) Developing Spreadsheet-Based

Decision Support Systems Using Excel and VBA for Excel: Second Edition. Dynamic

Ideas.

[9] Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D. (2003) Staff Scheduling and Rostering:
A Review of Applications, Methods and Models. European Journal of Operational

Research, 153, 3-27.

[10] Glover, F., McMillan, C. (1986) The General Employee Scheduling Problem: An

Integration of MS and AI. Computer & Operations Research, 13 No. 5, 563-573.

[11] Love, R. & Hoey, J. (1990) Management Science Improves Fast-Food Operations.

Interfaces, 20 No. 2, 21-29.

[12] Mason, A., & Dunning, I. (2010) OpenSolver: Open Source Optimisation for Excel.

Proceedings of the 45th Annual Conference of the ORSNZ, November 2010. Auckland,

181-190.

Katherine M. Perry

54

[13] Mehrotra, Vijay. (1997) Ringing Up Big Business. OR/MS Today, August, 1997,
www.orms-today.org/orms-8-97/CallCenter.html.

[14] Morris, J. & Showalter, M. (1983) Simple Approaches to Shift, Days-off and Tour

Scheduling Problem. Management Science, 28 No. 8, 942-950.

[15] Rottembourg, B. () Call Center Scheduling. Direction des Technologies Nouvelles,

www.decisioncraft.com.

[16] Taylor, P. & Huxley, S. (1989) A Break from Tradition for the San Francisco Police: Patrol

Officer Scheduling Using an Optimization-Based Decision Support System. Interfaces,
19 No. 1, 4-24.

[17] Tien, J., Kamiyama, A. (1982) On Manpower Scheduling Algorithms. SIAM Review, 25 No.

3, 275-287.

[18] Vohra, Rakesh. (1988) A Quick Heuristic for Some Cyclic Staffing Problems with Breaks.

The Journal of the Operational Research Society, 39 No. 11, 1057-1061.

[19] Williams, H. Paul. (1999) Model Building in Mathematical Programming: Fourth Edition.

Wiley.

[20] Winston, W. L., & Venkataramanan, M. (2003) Introduction to Mathematical Programming.

Operations Research: Volume 1. Thomson Brooks/Cole.

Katherine M. Perry

55

Chapter 4: Appendix

4.1 User Manual

The purpose of this tool is to assist in the scheduling of employees. This documentation will

walk the user though setting up the tool and then both inputting data into and interpreting the

data that comes out of the tool.

4.1.1 Installing OpenSolver

OpenSolver is a free add-in that is available for download

1. Go to www.opensolver.org

2. Go to “Download & Install” tab on the top of the page

3. Select “Download the OpenSolver zipfile”

Katherine M. Perry

56

4. Download the latest version by clicking the link

5. This will immediately begin your download

6. When the download is complete, open the zip file

Katherine M. Perry

57

7. Open the folder and run the executable “cbc.exe”

8. Extract all

9. Follow the prompts to continue through extraction wizard

10. OpenSolver will be available until you quit Excel. If you wish to make OpenSolver

always available in Excel, the files from the .zip all need to be copied into the Excel add-

in directory.

11. Find the folder for excel add-ins and paste all files from the zip into it. This folder is

usually:

Katherine M. Perry

58

C:\Documents and Settings\”user name”\Application Data\Microsoft\Addins

12. Now, when you open excel, the OpenSolver will be installed and accessible, in the data

tab:

13. You are now successfully installed!

Katherine M. Perry

59

4.1.2 Installing Excel Solver

Excel Solver is an add-in which is free and easily obtained. The series of screen shots below

outline this process.

1. Under the ‘File’ menu in Microsoft Excel, click on the button labeled ‘Excel Options’,

located at the bottom of the drop down menu.

2. In the Options dialog box which pops up, click on the ‘Add-Ins’ button on the left hand side

Katherine M. Perry

60

3. Click on the ‘Go…’ button next to ‘Manage Excel Add-ins’, making sure the drop down

menu says ‘Excel Add-ins’.

4. A final dialog box will open, asking which Add-ins to install. Here, check Solver Add-in and

click on ‘OK’.

Katherine M. Perry

61

5. Then the dialog box will go away and you can find Excel Solver under the ‘Data’ tab on the

ribbon located at the top of Excel work environment.

6. Excel Solver is now successfully installed!

Katherine M. Perry

62

4.1.3 Using the Model

Step 1: Input call data into the “Actual Calls” tab. Number of calls per time period for day for

the week should be typed into the gray area below. The first two columns are the time period

beginning and end, and the last column that is colored pink is the calculated averages for each

time period. This column is not to be changed.

Step 2: The next tab, “Format” is where the averages from the previous tab is sent. Here, we

have choices of demand as whole numbers. This tab formats them this way so the math program

can work as an integer program properly. The first set of three colored columns are simply

rounding based on the raw data input, and the second set of three colored columns are demand

options based on expected employee vacancy. Choose the desired demand column by pressing

the gray button above it. If in doubt about which one to choose, start on the left and run the

program. Move to the right until you cannot find a solution.

Katherine M. Perry

63

Step 3: Go to the “Parameters” tab. This is where you define the rules of scheduling. The cells

colored in gray are the ones the user is to change – leave all other cells as they are. Give values

for

Cell C4 – Number of 8 hour employees

Cell C6 – Number of 10 hour employees

Cell G5 – Maximum time between start of day and break 1 for 8 hour employees

Cell G6 – Maximum time between end of break 1 and lunch for 8 hour employees

Cell G7 – Maximum time between end of lunch and break 2 for 8 hour employees

Cell G8 – Maximum time between end of break 2 and end of the day for 8 hour employees

Cell G10 – Minimum time between start of day and break 1 for 8 hour employees

Cell G11 – Minimum time between end of break 1 and lunch for 8 hour employees

Cell G12 – Minimum time between end of lunch and break 2 for 8 hour employees

Cell G13 – Minimum time between end of break 2 and end of the day for 8 hour employees

Cell J5– Maximum time between start of day and break 1 for 10 hour employees

Cell J6 – Maximum time between end of break 1 and lunch for 10 hour employees

Cell J7 – Maximum time between end of lunch and break 2 for 10 hour employees

Cell J8 – Maximum time between end of break 2 and end of the day for 10 hour employees

Cell J10 – Minimum time between start of day and break 1 for 10 hour employees

Cell J11 – Minimum time between end of break 1 and lunch for 10 hour employees

Cell J12 – Minimum time between end of lunch and break 2 for 10 hour employees

Cell J13 – Minimum time between end of break 2 and end of the day for 10 hour employees

Katherine M. Perry

64

Step 4: In the same tab, there are three gray buttons below the input section. These are the

macros. First, press the “Generate Potential Schedules” button:

This will generate the list of all potential schedules based on the parameters that were set. Do not

interrupt the excel file while this is working – it will be rapidly flipping between sheets and filing

in schedules. If you wish to cancel the operation, press the escape key.

Step 5: Once the program is finished running the “Generate Potential Schedules” macro, you

must choose an objective:

1. Optimize – use the exact number of employees given

2. Minimize Staff Size – find a solution using the minimum number of staff possible

Katherine M. Perry

65

Press the button for the objective function you want. This will take some time, so do not interrupt

the process until your cursor has returned to normal. If you wish to stop the process, press the

escape key.

Step 6: You can read the schedules by looking at either the output on the “Schedules” tab or

more detailed in the “Final Schedule” tab. Both are pictured below:

“Schedules” tab:

This tab will show:

• The type of schedule (8 or 10-hour)

• The schedule start and end time

• The start time for each break

• The start and end time for lunch

• A numerical value for the day off, if 10-hour employee (1 = Monday, 2=Tuesday, … 5 =

Friday)

• The number of employees working that schedule

Additionally, across the top, the total number of 10 hour employees, 8 hour employees and the

total number of scheduled employees are displayed. The total number of employees can be less

than what is initially indicated by the user.

Katherine M. Perry

66

“Final Schedule” tab:

This tab will show:

• The type of schedule (8 or 10-hour)

• The day off, if 10-hour employee

• Fills in an orange “p” if the employee is at work at not on break or lunch

• Calculates the total number of employees on the phones for each 15 minute period

Additionally, the “Final Schedules” tab has calculated the total number of employees on the

phone during each 15-minute interval. This information is then automatically put into the “Gap

Analysis” tab. This will immediately calculate the estimates for staffing accuracy based on

vacancy, shown below.

Katherine M. Perry

67

Note: If the error below occurs after running either “Optimize” or “Minimize Staff Size,” then

there is not set of schedules that can meet he requirements. This means that the demand should

be decreased. Simply choose a column to the left on the “Format” tab. If preferable, the user can

increase the number of 8 and/or 10-hour employees. Either of these methods will broaden the

range of solutions and give a better chance of finding a solution.

Katherine M. Perry

68

4.2 Macros

4.2.1 Generate Schedules Macro

Sub GenerateSchedules()

 Application.Calculation = xlCalculationManual

 Dim sn As Integer, curR As Range, curDetR As Range, sti As Integer, br1 As

Integer, br2 As Integer, br3 As Integer, numStarts As Integer, dayoff As Integer

 sn = 1

 Sheets("Schedules").Select

 Range("K1").Select

 Range(Selection, Selection.End(xlToLeft)).Select

 Set fR = Range(Selection, Selection.End(xlDown))

 fR.AutoFilter Field:=10

 Set curR = ThisWorkbook.Sheets("Schedules").Range("A2")

 Range(curR, curR.Offset(1000, 9)).ClearContents

 Range(curR.Offset(0, 16), curR.Offset(1000, 18)).ClearContents

 Set curDetR = ThisWorkbook.Sheets("Detailed Schedules").Range("A2")

 Range(curDetR.Offset(1, 0), curDetR.Offset(1000, 31)).ClearContents

 numStarts = ThisWorkbook.Sheets("Parameters").Range("numSt8")

 Dim i1 As Integer, i2 As Integer, i3 As Integer, i4 As Integer, i5 As Integer, i6

As Integer, i7 As Integer, i8 As Integer

 Dim c1 As Integer, c2 As Integer, c3 As Integer, c4 As Integer, c5 As Integer, c6

As Integer, c7 As Integer, c8 As Integer

 With ThisWorkbook.Sheets("Parameters")

 i1 = WorksheetFunction.Round(.Range("G5") * 48, 1)

 i2 = WorksheetFunction.Round(.Range("G6") * 48, 1)

 i3 = WorksheetFunction.Round(.Range("G7") * 48, 1)

 i4 = WorksheetFunction.Round(.Range("G8") * 48, 1)

 i5 = WorksheetFunction.Round(.Range("G10") * 48, 1)

 i6 = WorksheetFunction.Round(.Range("G11") * 48, 1)

 i7 = WorksheetFunction.Round(.Range("G12") * 48, 1)

 i8 = WorksheetFunction.Round(.Range("G13") * 48, 1)

 c1 = WorksheetFunction.Round(.Range("J5") * 48, 1)

 c2 = WorksheetFunction.Round(.Range("J6") * 48, 1)

 c3 = WorksheetFunction.Round(.Range("J7") * 48, 1)

 c4 = WorksheetFunction.Round(.Range("J8") * 48, 1)

 c5 = WorksheetFunction.Round(.Range("J10") * 48, 1)

 c6 = WorksheetFunction.Round(.Range("J11") * 48, 1)

 c7 = WorksheetFunction.Round(.Range("J12") * 48, 1)

 c8 = WorksheetFunction.Round(.Range("J13") * 48, 1)

 End With

 For sti = 1 To numStarts

 For br1 = i5 To i1

 For br2 = (i6 + 1) To (i2 + 1)

 For br3 = (i7 + 1) To (i3 + 1)

 curR = sn

 curR.Offset(0, 1) = "8-Hour"

Katherine M. Perry

69

 curR.Offset(0, 2) = ThisWorkbook.Sheets("Parameters").Range("stT")

+ (sti - 1) / 48

 curR.Offset(0, 3) = "=IF(RC[-2]=""8-Hour"",RC[-1]+8.5/24,RC[-

1]+11/24)"

 curR.Offset(0, 4) = curR.Offset(0, 2) + br1 / 48

 curR.Offset(0, 5) = curR.Offset(0, 4) + br2 / 48

 curR.Offset(0, 6) = "=IF(RC[-5]=""8-Hour"",RC[-1]+0.5/24,RC[-

1]+1/24)"

 curR.Offset(0, 7) = curR.Offset(0, 5) + br3 / 48

 curR.Offset(0, 8) = 0

 curR.Offset(0, 9).FormulaR1C1 = "='Detailed Schedules'!RC[17]"

 curR.Offset(0, 18).FormulaR1C1 = "=RC[-15]-RC[-11]-1/48"

 If curR.Offset(0, 18) <= i4 / 24# And curR.Offset(0, 18) <= i8 /

24# Then

 Set curR = curR.Offset(1, 0)

 If sn > 1 Then

 curDetR = sn

 curDetR.Offset(0, 1) = "8-Hour"

 Range(curDetR.Offset(-1, 2), curDetR.Offset(-1, 30)).Copy

 Range(curDetR.Offset(0, 2), curDetR.Offset(0,

30)).PasteSpecial xlPasteAll, xlPasteSpecialOperationNone, False, False

 curDetR.Offset(0, 31) = 1

 End If

 Set curDetR = curDetR.Offset(1, 0)

 sn = sn + 1

 End If

 Next br3

 Next br2

 Next br1

 Next sti

 numStarts = ThisWorkbook.Sheets("Parameters").Range("numSt10")

 For sti = 1 To numStarts

 For br1 = c5 To c1

 For br2 = (c6 + 1) To (c2 + 1)

 For br3 = (c7 + 2) To (c3 + 2)

 curR = sn

 curR.Offset(0, 1) = "10-Hour"

 curR.Offset(0, 2) =

ThisWorkbook.Sheets("Parameters").Range("stT") + (sti - 1) / 48

 curR.Offset(0, 3) = "=IF(RC[-2]=""8-Hour"",RC[-1]+8.5/24,RC[-

1]+11/24)"

 curR.Offset(0, 4) = curR.Offset(0, 2) + br1 / 48

 curR.Offset(0, 5) = curR.Offset(0, 4) + br2 / 48

 curR.Offset(0, 6) = "=IF(RC[-5]=""8-Hour"",RC[-1]+0.5/24,RC[-

1]+1/24)"

 curR.Offset(0, 7) = curR.Offset(0, 5) + br3 / 48

 curR.Offset(0, 8) = dayoff

 curR.Offset(0, 9).FormulaR1C1 = "='Detailed Schedules'!RC[17]"

 curR.Offset(0, 18).FormulaR1C1 = "=RC[-15]-RC[-11]-1/48"

 If curR.Offset(0, 18) <= c4 / 24# And curR.Offset(0, 18) <= c8

/ 24# Then

 dayoff = 1

Katherine M. Perry

70

 Do While dayoff <= 5

 curR = sn

 curR.Offset(0, 1) = "10-Hour"

 curR.Offset(0, 2) =

ThisWorkbook.Sheets("Parameters").Range("stT") + (sti - 1) / 48

 curR.Offset(0, 3) = "=IF(RC[-2]=""8-Hour"",RC[-

1]+8.5/24,RC[-1]+11/24)"

 curR.Offset(0, 4) = curR.Offset(0, 2) + br1 / 48

 curR.Offset(0, 5) = curR.Offset(0, 4) + br2 / 48

 curR.Offset(0, 6) = "=IF(RC[-5]=""8-Hour"",RC[-

1]+0.5/24,RC[-1]+1/24)"

 curR.Offset(0, 7) = curR.Offset(0, 5) + br3 / 48

 curR.Offset(0, 8) = dayoff

 curR.Offset(0, 9).FormulaR1C1 = "='Detailed

Schedules'!RC[17]"

 curR.Offset(0, 16).FormulaR1C1 = "=RC[-11]-RC[-12]-

0.5/24"

 curR.Offset(0, 17).FormulaR1C1 = "=RC[-10]-RC[-12]-

IF(RC[-16]=""8-Hour"",1,2)/48"

 curR.Offset(0, 18).FormulaR1C1 = "=RC[-15]-RC[-11]-

1/48"

 Set curR = curR.Offset(1, 0)

 curDetR = sn

 curDetR.Offset(0, 1) = "10-Hour"

 Range(curDetR.Offset(-1, 2), curDetR.Offset(-1,

30)).Copy

 Range(curDetR.Offset(0, 2), curDetR.Offset(0,

30)).PasteSpecial xlPasteAll, xlPasteSpecialOperationNone, False, False

 curDetR.Offset(0, 31) = 1

 Set curDetR = curDetR.Offset(1, 0)

 sn = sn + 1

 dayoff = dayoff + 1

 Loop

 Else

 Range(curR, curR.Offset(0, 9)).ClearContents

 Range(curR.Offset(0, 16), curR.Offset(0,

18)).ClearContents

 End If

 Next br3

 Next br2

 Next br1

 Next sti

 ThisWorkbook.Sheets("Schedules").Range("A1").Select

 ThisWorkbook.Sheets("Detailed Schedules").Range("AB2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(AB2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Ac2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Ac2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Ad2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Ad2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Ae2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Ae2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Af2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Af2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

Katherine M. Perry

71

 ThisWorkbook.Sheets("Detailed Schedules").Range("AJ2").Formula =

"=SUMIF(B2:B10000,""10-Hour"",AA2:AA10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AK2").Formula =

"=SUMIF(B2:B10000,""8-Hour"",AA2:AA10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AB2:AF2").Copy

 ThisWorkbook.Sheets("Detailed Schedules").Range("AB2:AF10000").PasteSpecial

xlPasteFormulas

 Application.Calculation = xlCalculationAutomatic

 ThisWorkbook.Sheets("Detailed Schedules").Range("AB2:AF10000").Copy

 ThisWorkbook.Sheets("Detailed Schedules").Range("AB2:AF10000").PasteSpecial

xlPasteValues

 ThisWorkbook.Sheets("Detailed Schedules").Range("AB2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(AB2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Ac2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Ac2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Ad2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Ad2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Ae2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Ae2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Detailed Schedules").Range("Af2").Formula = "=IF($B2=""8-

Hour"",1,IF(COLUMN(Af2)-COLUMN(AA1)=VLOOKUP($A2,Schedules!$A:$I,9),0,1))"

 ThisWorkbook.Sheets("Schedules").Range("A1").Select

 Application.Calculation = xlCalculationManual

 Sheets("Schedules").Select

 Dim n As Integer

 With ThisWorkbook.Sheets("Parameters")

 n = Application.CountA(Range("A:A"))

 End With

 Dim i As Integer, var1 As Integer, var2 As Integer

 i = 2

 ' Range(.Range("A1"), .Range("A65535").End(xlUp)).Count

 ' MyCount = Application.CountA(Range("A:A"))

 For i = 2 To n

 With ThisWorkbook.Sheets("Schedules")

 var1 = WorksheetFunction.Round(.Range("H" + CStr(i)).Value * 48, 1)

 'var 1 = break 2 begin (need to add 1 half hour for calculations)

 var2 = WorksheetFunction.Round(.Range("D" + CStr(i)).Value * 48, 1)

 'var2 = end of day

 var3 = Range("C" + CStr(i)).Value

 End With

 If ThisWorkbook.Sheets("Schedules").Range("B" + CStr(i)).Value = "8-Hour"

Then

 If (var2 - (var1 + 1)) < i8 Then

 'if (end of day) - (break 2 + 1) < min time

 'break 2 = column h

 'end of day = column d

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value =

"False"

Katherine M. Perry

72

 ElseIf (var2 - (var1 + 1)) > i4 Then

 'if (end of day) - (break 2 + 1) > max time

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value =

"False"

 Else

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value =

"True"

 End If

 ElseIf ThisWorkbook.Sheets("Schedules").Range("B" + CStr(i)).Value = "10-

Hour" Then

 If (var2 - (var1 + 1)) < c8 Then

 'if (end of day) - (break 2 + 1) < min time

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value =

"False"

 ElseIf (var2 - (var1 + 1)) > c4 Then

 'if (end of day) - (break 2 + 1) > max time

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value =

"False"

 Else

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value =

"True"

 End If

 Else

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value = "n/a"

 End If

 Next i

 For i = n To 2 Step -1

 If ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).Value = "False"

Then

 ThisWorkbook.Sheets("Schedules").Range("M" + CStr(i)).EntireRow.Delete

 ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

 End If

 Next i

'THIS IS TO BRING THE NUMBER OF POTENTIAL SCHEDULES DOWN TO 200 OR FEWER

'UNCOMMENT FOR EXCEL SOLVER

'LEAVE COMMENTED OUT FOR OPENSOLVER

' Dim x As Long

' x = Application.CountA(Range("A:A"))

' If x > 200 And x <= 300 Then

' For i = x To 2 Step -3

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' 'delete every third one (133.33 to 200)

' ElseIf x > 300 And x <= 400 Then

' For i = x To 2 Step -2

Katherine M. Perry

73

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' 'delete every other one (150 to 200)

' ElseIf x > 400 And x <= 500 Then

' For i = x To 2 Step -2

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' For i = x To 2 Step -5

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' 'delete every other one (200 to 250)

' 'delete every 5th one (up to 200)

' ElseIf x > 500 And x <= 600 Then

' For i = x To 2 Step -2

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' For i = x To 2 Step -3

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' 'delete every other one (250 to 300)

' 'delete every other one (250 to 300)

' ElseIf x > 600 And x <= 700 Then

' For i = x To 2 Step -2

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' For i = x To 2 Step -2

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

Katherine M. Perry

74

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' 'delete everyother one (300 to 350)

' 'delete everyother one (150 to 175)

' ElseIf x > 700 And x <= 800 Then

' For i = n To 2 Step -2

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' For i = x To 2 Step -2

' ThisWorkbook.Sheets("Schedules").Range("A" +

CStr(i)).EntireRow.Delete

' ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(i), "AF" +

CStr(i)).Delete

' Next i

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' 'delete everyother one (350 to 400)

' 'delete everyother one (175 to 200)

' ElseIf x > 800 Then

' ThisWorkbook.Sheets("Schedules").Range("A202",

"A10000").EntireRow.ClearContents

' ThisWorkbook.Sheets("Detailed Schedules").Range("A202",

"A10000").EntireRow.ClearContents

' ThisWorkbook.Sheets("Schedules").Range("N4").Value = "NOTE: More than 200

schedules generated"

' Else

' ThisWorkbook.Sheets("Schedules").Range("N4").ClearContents

' End If

 ThisWorkbook.Sheets("Detailed Schedules").Range("AM2").Formula =

"=SUMPRODUCT(AB2:AB10000,C2:C10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AM3").Formula =

"=SUMPRODUCT(Ac2:Ac10000,C2:C10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AM4").Formula =

"=SUMPRODUCT(Ad2:Ad10000,C2:C10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AM5").Formula =

"=SUMPRODUCT(Ae2:Ae10000,C2:C10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AM6").Formula =

"=SUMPRODUCT(Af2:Af10000,C2:C10000)"

 ThisWorkbook.Sheets("Detailed Schedules").Range("AM2:AM6").Copy

 ThisWorkbook.Sheets("Detailed Schedules").Range("AN2:BJ6").PasteSpecial

xlPasteFormulas

 ThisWorkbook.Sheets("Schedules").Range("M2", "M10000").ClearContents

 Dim y As Long

 y = Application.CountA(ThisWorkbook.Sheets("Detailed Schedules").Range("A:A"))

 ThisWorkbook.Sheets("Detailed Schedules").Range("A" + CStr(y + 1),

"A10000").EntireRow.ClearContents

Katherine M. Perry

75

 Application.Calculation = xlCalculationAutomatic

End Sub

4.2.2 Minimize Macro

Sub Minimize()

 Application.DisplayAlerts = False

 Dim numP As Integer, num10 As Integer, num8 As Integer

 ThisWorkbook.Sheets("Schedules").Select

 Range("K1").Select

 Range(Selection, Selection.End(xlToLeft)).Select

 Set fR = Range(Selection, Selection.End(xlDown))

 fR.AutoFilter Field:=11

 numP = ThisWorkbook.Sheets("Parameters").Range("numPer")

 num10 = ThisWorkbook.Sheets("Parameters").Range("_num10")

 num8 = ThisWorkbook.Sheets("Parameters").Range("_num8")

 ThisWorkbook.Sheets("Detailed Schedules").Activate

 Set curDetR = Range("A2")

 i = 1

 Do Until curDetR = ""

 i = i + 1

 Set curDetR = curDetR.Offset(1, 0)

 Loop

 Range(curDetR.Offset(0, 26), curDetR.Offset(0, 26).End(xlDown)).ClearContents

 SolverReset

 SolverOk SetCell:="AG2", MaxMinVal:=2, ValueOf:="0", ByChange:="AA2:AA" & i

 SolverOptions MaxTime:=10000, Iterations:=10000, Precision:=0.000001,

AssumeLinear:=True, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1,

IntTolerance:=5, Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=True

 SolverAdd CellRef:="AA2:AA" & i, Relation:=3, FormulaText:="0"

 SolverAdd CellRef:="AA2:AA" & i, Relation:=4, FormulaText:="integer"

 'SolverAdd CellRef:="AI2", Relation:=3, FormulaText:="0"

 SolverAdd CellRef:="AM15:BJ19", Relation:=3, FormulaText:="0"

 SolverAdd CellRef:="AJ2", Relation:=1, FormulaText:=CStr(num10)

 SolverAdd CellRef:="AK2", Relation:=1, FormulaText:=CStr(num8)

 SolverOk SetCell:="AG2", MaxMinVal:=2, ValueOf:="0", ByChange:="AA2:AA" & i

 'SolverSolve

 RunOpenSolver False

 Sheets("Schedules").Select

 Range("K1").Select

 Range(Selection, Selection.End(xlToLeft)).Select

 Set fR = Range(Selection, Selection.End(xlDown))

 fR.AutoFilter

 fR.AutoFilter Field:=10, Criteria1:=">=0.5", Operator:=xlAnd

 Application.DisplayAlerts = True

 ThisWorkbook.Sheets("Schedules").Range("A1").Select

Katherine M. Perry

76

 Application.Calculation = xlCalculationAutomatic

 Application.Calculation = xlCalculationManual

 ThisWorkbook.Sheets("Final Schedule").Range("J12:BH100").ClearContents

 ThisWorkbook.Sheets("Final Schedule").Range("J12:BH100").Interior.ColorIndex =

xlNone

 With ThisWorkbook.Sheets("Detailed Schedules")

 Dim location As Integer

 location = 12

 Dim endrow As Integer, rownum As Integer, numemployees As Integer

 Dim timeC As Integer, timeD As Integer, timeE As Integer, timeF As Integer,

timeG As Integer, timeH As Integer, timeI As Integer, timeJ As Integer, timeK As

Integer, timeL As Integer, timeM As Integer, timeN As Integer, timeO As Integer, timeP

As Integer, timeQ As Integer, timeR As Integer, timeS As Integer, timeT As Integer,

timeU As Integer, timeV As Integer, timeW As Integer, timeX As Integer, timeY As

Integer, timeZ As Integer

 endrow = Application.CountA(ThisWorkbook.Sheets("Detailed

Schedules").Range("A:A"))

 For rownum = 2 To endrow

 numemployees = WorksheetFunction.Round(.Range("AA" + CStr(rownum)), 1)

 If numemployees > 0 Then

 'scheduletype = Range("B" + CStr(rownum))

 timeC = WorksheetFunction.Round(.Range("C" + CStr(rownum)), 1)

 timeD = WorksheetFunction.Round(.Range("D" + CStr(rownum)), 1)

 timeE = WorksheetFunction.Round(.Range("E" + CStr(rownum)), 1)

 timeF = WorksheetFunction.Round(.Range("F" + CStr(rownum)), 1)

 timeG = WorksheetFunction.Round(.Range("G" + CStr(rownum)), 1)

 timeH = WorksheetFunction.Round(.Range("H" + CStr(rownum)), 1)

 timeI = WorksheetFunction.Round(.Range("I" + CStr(rownum)), 1)

 timeJ = WorksheetFunction.Round(.Range("J" + CStr(rownum)), 1)

 timeK = WorksheetFunction.Round(.Range("K" + CStr(rownum)), 1)

 timeL = WorksheetFunction.Round(.Range("L" + CStr(rownum)), 1)

 timeM = WorksheetFunction.Round(.Range("M" + CStr(rownum)), 1)

 timeN = WorksheetFunction.Round(.Range("N" + CStr(rownum)), 1)

 timeO = WorksheetFunction.Round(.Range("O" + CStr(rownum)), 1)

 timeP = WorksheetFunction.Round(.Range("P" + CStr(rownum)), 1)

 timeQ = WorksheetFunction.Round(.Range("Q" + CStr(rownum)), 1)

 timeR = WorksheetFunction.Round(.Range("R" + CStr(rownum)), 1)

 timeS = WorksheetFunction.Round(.Range("S" + CStr(rownum)), 1)

 timeT = WorksheetFunction.Round(.Range("T" + CStr(rownum)), 1)

 timeU = WorksheetFunction.Round(.Range("U" + CStr(rownum)), 1)

 timeV = WorksheetFunction.Round(.Range("V" + CStr(rownum)), 1)

 timeW = WorksheetFunction.Round(.Range("W" + CStr(rownum)), 1)

 timeX = WorksheetFunction.Round(.Range("X" + CStr(rownum)), 1)

 timeY = WorksheetFunction.Round(.Range("Y" + CStr(rownum)), 1)

 timeZ = WorksheetFunction.Round(.Range("Z" + CStr(rownum)), 1)

 Dim j As Integer

 For j = 1 To numemployees

 'insert printing cells running through columns of time periods

 If timeC > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("M" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("M" +

CStr(location)).Interior.ColorIndex = 46

Katherine M. Perry

77

 ThisWorkbook.Sheets("Final Schedule").Range("N" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("N" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("M" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("N" +

CStr(location)).Value = "-"

 End If

 If timeD > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("O" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("O" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("P" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("P" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("O" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("P" +

CStr(location)).Value = "-"

 End If

 If timeE > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("Q" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("Q" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("R" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("R" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("Q" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("R" +

CStr(location)).Value = "-"

 End If

 If timeF > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("S" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("S" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("T" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("T" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("S" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("T" +

CStr(location)).Value = "-"

 End If

Katherine M. Perry

78

 If timeG > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("U" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("U" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("V" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("V" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("U" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("V" +

CStr(location)).Value = "-"

 End If

 If timeH > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("W" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("W" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("X" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("X" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("W" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("X" +

CStr(location)).Value = "-"

 End If

 If timeI > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("Y" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("Y" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("Z" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("Z" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("Y" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("Z" +

CStr(location)).Value = "-"

 End If

 If timeJ > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AA" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AA" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AB" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AB" +

CStr(location)).Interior.ColorIndex = 46

 Else

Katherine M. Perry

79

 ThisWorkbook.Sheets("Final Schedule").Range("AA" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AB" +

CStr(location)).Value = "-"

 End If

 If timeK > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AC" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AC" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AD" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AD" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AC" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AD" +

CStr(location)).Value = "-"

 End If

 If timeL > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AE" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AE" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AF" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AF" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AE" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AF" +

CStr(location)).Value = "-"

 End If

 If timeM > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AG" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AG" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AH" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AH" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AG" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AH" +

CStr(location)).Value = "-"

 End If

 If timeN > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AI" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AI" +

CStr(location)).Interior.ColorIndex = 46

Katherine M. Perry

80

 ThisWorkbook.Sheets("Final Schedule").Range("AJ" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AJ" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AI" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AJ" +

CStr(location)).Value = "-"

 End If

 If timeO > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AK" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AK" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AL" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AL" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AK" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AL" +

CStr(location)).Value = "-"

 End If

 If timeP > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AM" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AM" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AN" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AN" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AM" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AN" +

CStr(location)).Value = "-"

 End If

 If timeQ > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AO" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AO" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AP" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AP" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AO" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AP" +

CStr(location)).Value = "-"

 End If

Katherine M. Perry

81

 If timeR > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AQ" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AQ" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AR" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AR" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AQ" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AR" +

CStr(location)).Value = "-"

 End If

 If timeS > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AS" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AS" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AT" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AT" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AS" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AT" +

CStr(location)).Value = "-"

 End If

 If timeT > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AU" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AU" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AV" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AV" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AU" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AV" +

CStr(location)).Value = "-"

 End If

 If timeU > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AW" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AW" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AX" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AX" +

CStr(location)).Interior.ColorIndex = 46

 Else

Katherine M. Perry

82

 ThisWorkbook.Sheets("Final Schedule").Range("AW" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AX" +

CStr(location)).Value = "-"

 End If

 If timeV > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AY" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AY" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AZ" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AZ" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AY" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AZ" +

CStr(location)).Value = "-"

 End If

 If timeW > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BA" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BA" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("BB" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BB" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BA" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BB" +

CStr(location)).Value = "-"

 End If

 If timeX > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BC" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BC" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("BD" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BD" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BC" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BD" +

CStr(location)).Value = "-"

 End If

 If timeY > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BE" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BE" +

CStr(location)).Interior.ColorIndex = 46

Katherine M. Perry

83

 ThisWorkbook.Sheets("Final Schedule").Range("BF" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BF" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BE" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BF" +

CStr(location)).Value = "-"

 End If

 If timeZ > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BG" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BG" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("BH" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BH" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BG" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BH" +

CStr(location)).Value = "-"

 End If

 If ThisWorkbook.Sheets("Detailed Schedules").Range("B" +

CStr(rownum)).Value = "8-Hour" Then

 ThisWorkbook.Sheets("Final Schedule").Range("K" +

CStr(location)).Value = "8-Hour"

 Else

 'ThisWorkbook.Sheets("Detailed Schedules").Range("B" +

CStr(rownum)).Value = "10-hour" Then

 ThisWorkbook.Sheets("Final Schedule").Range("K" +

CStr(location)).Value = "10-Hour"

 If ThisWorkbook.Sheets("Detailed Schedules").Range("AB" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Monday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AC" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Tuesday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AD" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Wednesday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AE" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Thursday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AF" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Friday"

 End If

Katherine M. Perry

84

 End If

 location = location + 1

 Next j

 End If

 Next rownum

 End With

 Application.Calculation = xlCalculationAutomatic

 ThisWorkbook.Sheets("Final Schedule").Range("M5:BH5").Copy

 ThisWorkbook.Sheets("Gap Analysis").Range("B3:AW3").PasteSpecial xlPasteValues

End Sub

4.2.3 Optimize Macro

Sub Optimize()

 Application.DisplayAlerts = False

 Dim numP As Integer, num10 As Integer, num8 As Integer

 ThisWorkbook.Sheets("Schedules").Select

 Range("K1").Select

 Range(Selection, Selection.End(xlToLeft)).Select

 Set fR = Range(Selection, Selection.End(xlDown))

 fR.AutoFilter Field:=10

 numP = ThisWorkbook.Sheets("Parameters").Range("numPer")

 num10 = ThisWorkbook.Sheets("Parameters").Range("_num10")

 num8 = ThisWorkbook.Sheets("Parameters").Range("_num8")

 ThisWorkbook.Sheets("Detailed Schedules").Activate

 Set curDetR = Range("A2")

 i = 1

 Do Until curDetR = ""

 i = i + 1

 Set curDetR = curDetR.Offset(1, 0)

 Loop

 Range(curDetR.Offset(0, 26), curDetR.Offset(0, 26).End(xlDown)).ClearContents

 SolverReset

 SolverOk SetCell:="AH2", MaxMinVal:=2, ValueOf:="0", ByChange:="AA2:AA" & i

 SolverOptions MaxTime:=10000, Iterations:=10000, Precision:=0.000001,

AssumeLinear:=True, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1,

IntTolerance:=5, Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=True

 SolverAdd CellRef:="AA2:AA" & i, Relation:=3, FormulaText:="0"

 SolverAdd CellRef:="AA2:AA" & i, Relation:=4, FormulaText:="integer"

 'SolverAdd CellRef:="AI2", Relation:=3, FormulaText:="0"

 SolverAdd CellRef:="AM15:BJ19", Relation:=3, FormulaText:="0"

 SolverAdd CellRef:="AJ2", Relation:=2, FormulaText:=CStr(num10)

 SolverAdd CellRef:="AK2", Relation:=2, FormulaText:=CStr(num8)

 SolverOk SetCell:="AH2", MaxMinVal:=2, ValueOf:="0", ByChange:="AA2:AA" & i

 'SolverSolve

Katherine M. Perry

85

 RunOpenSolver False

 Sheets("Schedules").Select

 Range("K1").Select

 Range(Selection, Selection.End(xlToLeft)).Select

 Set fR = Range(Selection, Selection.End(xlDown))

 fR.AutoFilter

 fR.AutoFilter Field:=10, Criteria1:=">=0.5", Operator:=xlAnd

 Application.DisplayAlerts = True

 ThisWorkbook.Sheets("Schedules").Range("A1").Select

 Application.Calculation = xlCalculationAutomatic

 Application.Calculation = xlCalculationManual

 ThisWorkbook.Sheets("Final Schedule").Range("J12:BH100").ClearContents

 ThisWorkbook.Sheets("Final Schedule").Range("J12:BH100").Interior.ColorIndex =

xlNone

 With ThisWorkbook.Sheets("Detailed Schedules")

 Dim location As Integer

 location = 12

 Dim endrow As Integer, rownum As Integer, numemployees As Integer

 Dim timeC As Integer, timeD As Integer, timeE As Integer, timeF As Integer,

timeG As Integer, timeH As Integer, timeI As Integer, timeJ As Integer, timeK As

Integer, timeL As Integer, timeM As Integer, timeN As Integer, timeO As Integer, timeP

As Integer, timeQ As Integer, timeR As Integer, timeS As Integer, timeT As Integer,

timeU As Integer, timeV As Integer, timeW As Integer, timeX As Integer, timeY As

Integer, timeZ As Integer

 endrow = Application.CountA(ThisWorkbook.Sheets("Detailed

Schedules").Range("A:A"))

 For rownum = 2 To endrow

 numemployees = WorksheetFunction.Round(.Range("AA" + CStr(rownum)), 1)

 If numemployees > 0 Then

 'scheduletype = Range("B" + CStr(rownum))

 timeC = WorksheetFunction.Round(.Range("C" + CStr(rownum)), 1)

 timeD = WorksheetFunction.Round(.Range("D" + CStr(rownum)), 1)

 timeE = WorksheetFunction.Round(.Range("E" + CStr(rownum)), 1)

 timeF = WorksheetFunction.Round(.Range("F" + CStr(rownum)), 1)

 timeG = WorksheetFunction.Round(.Range("G" + CStr(rownum)), 1)

 timeH = WorksheetFunction.Round(.Range("H" + CStr(rownum)), 1)

 timeI = WorksheetFunction.Round(.Range("I" + CStr(rownum)), 1)

 timeJ = WorksheetFunction.Round(.Range("J" + CStr(rownum)), 1)

 timeK = WorksheetFunction.Round(.Range("K" + CStr(rownum)), 1)

 timeL = WorksheetFunction.Round(.Range("L" + CStr(rownum)), 1)

 timeM = WorksheetFunction.Round(.Range("M" + CStr(rownum)), 1)

 timeN = WorksheetFunction.Round(.Range("N" + CStr(rownum)), 1)

 timeO = WorksheetFunction.Round(.Range("O" + CStr(rownum)), 1)

 timeP = WorksheetFunction.Round(.Range("P" + CStr(rownum)), 1)

 timeQ = WorksheetFunction.Round(.Range("Q" + CStr(rownum)), 1)

 timeR = WorksheetFunction.Round(.Range("R" + CStr(rownum)), 1)

 timeS = WorksheetFunction.Round(.Range("S" + CStr(rownum)), 1)

 timeT = WorksheetFunction.Round(.Range("T" + CStr(rownum)), 1)

 timeU = WorksheetFunction.Round(.Range("U" + CStr(rownum)), 1)

 timeV = WorksheetFunction.Round(.Range("V" + CStr(rownum)), 1)

 timeW = WorksheetFunction.Round(.Range("W" + CStr(rownum)), 1)

Katherine M. Perry

86

 timeX = WorksheetFunction.Round(.Range("X" + CStr(rownum)), 1)

 timeY = WorksheetFunction.Round(.Range("Y" + CStr(rownum)), 1)

 timeZ = WorksheetFunction.Round(.Range("Z" + CStr(rownum)), 1)

 Dim j As Integer

 For j = 1 To numemployees

 'insert printing cells running through columns of time periods

 If timeC > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("M" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("M" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("N" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("N" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("M" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("N" +

CStr(location)).Value = "-"

 End If

 If timeD > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("O" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("O" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("P" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("P" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("O" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("P" +

CStr(location)).Value = "-"

 End If

 If timeE > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("Q" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("Q" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("R" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("R" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("Q" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("R" +

CStr(location)).Value = "-"

 End If

 If timeF > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("S" +

CStr(location)).Value = "p"

Katherine M. Perry

87

 ThisWorkbook.Sheets("Final Schedule").Range("S" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("T" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("T" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("S" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("T" +

CStr(location)).Value = "-"

 End If

 If timeG > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("U" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("U" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("V" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("V" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("U" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("V" +

CStr(location)).Value = "-"

 End If

 If timeH > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("W" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("W" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("X" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("X" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("W" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("X" +

CStr(location)).Value = "-"

 End If

 If timeI > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("Y" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("Y" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("Z" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("Z" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("Y" +

CStr(location)).Value = "-"

Katherine M. Perry

88

 ThisWorkbook.Sheets("Final Schedule").Range("Z" +

CStr(location)).Value = "-"

 End If

 If timeJ > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AA" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AA" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AB" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AB" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AA" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AB" +

CStr(location)).Value = "-"

 End If

 If timeK > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AC" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AC" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AD" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AD" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AC" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AD" +

CStr(location)).Value = "-"

 End If

 If timeL > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AE" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AE" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AF" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AF" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AE" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AF" +

CStr(location)).Value = "-"

 End If

 If timeM > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AG" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AG" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AH" +

CStr(location)).Value = "p"

Katherine M. Perry

89

 ThisWorkbook.Sheets("Final Schedule").Range("AH" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AG" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AH" +

CStr(location)).Value = "-"

 End If

 If timeN > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AI" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AI" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AJ" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AJ" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AI" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AJ" +

CStr(location)).Value = "-"

 End If

 If timeO > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AK" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AK" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AL" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AL" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AK" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AL" +

CStr(location)).Value = "-"

 End If

 If timeP > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AM" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AM" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AN" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AN" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AM" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AN" +

CStr(location)).Value = "-"

 End If

 If timeQ > 0.5 Then

Katherine M. Perry

90

 ThisWorkbook.Sheets("Final Schedule").Range("AO" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AO" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AP" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AP" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AO" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AP" +

CStr(location)).Value = "-"

 End If

 If timeR > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AQ" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AQ" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AR" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AR" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AQ" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AR" +

CStr(location)).Value = "-"

 End If

 If timeS > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AS" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AS" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AT" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AT" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AS" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AT" +

CStr(location)).Value = "-"

 End If

 If timeT > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AU" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AU" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AV" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AV" +

CStr(location)).Interior.ColorIndex = 46

 Else

Katherine M. Perry

91

 ThisWorkbook.Sheets("Final Schedule").Range("AU" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AV" +

CStr(location)).Value = "-"

 End If

 If timeU > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AW" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AW" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AX" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AX" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AW" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AX" +

CStr(location)).Value = "-"

 End If

 If timeV > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("AY" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AY" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("AZ" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("AZ" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("AY" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("AZ" +

CStr(location)).Value = "-"

 End If

 If timeW > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BA" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BA" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("BB" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BB" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BA" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BB" +

CStr(location)).Value = "-"

 End If

 If timeX > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BC" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BC" +

CStr(location)).Interior.ColorIndex = 46

Katherine M. Perry

92

 ThisWorkbook.Sheets("Final Schedule").Range("BD" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BD" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BC" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BD" +

CStr(location)).Value = "-"

 End If

 If timeY > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BE" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BE" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("BF" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BF" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BE" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BF" +

CStr(location)).Value = "-"

 End If

 If timeZ > 0.5 Then

 ThisWorkbook.Sheets("Final Schedule").Range("BG" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BG" +

CStr(location)).Interior.ColorIndex = 46

 ThisWorkbook.Sheets("Final Schedule").Range("BH" +

CStr(location)).Value = "p"

 ThisWorkbook.Sheets("Final Schedule").Range("BH" +

CStr(location)).Interior.ColorIndex = 46

 Else

 ThisWorkbook.Sheets("Final Schedule").Range("BG" +

CStr(location)).Value = "-"

 ThisWorkbook.Sheets("Final Schedule").Range("BH" +

CStr(location)).Value = "-"

 End If

 If ThisWorkbook.Sheets("Detailed Schedules").Range("B" +

CStr(rownum)).Value = "8-Hour" Then

 ThisWorkbook.Sheets("Final Schedule").Range("K" +

CStr(location)).Value = "8-Hour"

 Else

 'ThisWorkbook.Sheets("Detailed Schedules").Range("B" +

CStr(rownum)).Value = "10-hour" Then

 ThisWorkbook.Sheets("Final Schedule").Range("K" +

CStr(location)).Value = "10-Hour"

 If ThisWorkbook.Sheets("Detailed Schedules").Range("AB" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Monday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AC" +

CStr(rownum)).Value = "0" Then

Katherine M. Perry

93

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Tuesday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AD" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Wednesday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AE" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Thursday"

 ElseIf ThisWorkbook.Sheets("Detailed Schedules").Range("AF" +

CStr(rownum)).Value = "0" Then

 ThisWorkbook.Sheets("Final Schedule").Range("J" +

CStr(location)).Value = "Friday"

 End If

 End If

 location = location + 1

 Next j

 End If

 Next rownum

 End With

 Application.Calculation = xlCalculationAutomatic

 ThisWorkbook.Sheets("Final Schedule").Range("M5:BH5").Copy

 ThisWorkbook.Sheets("Gap Analysis").Range("B3:AW3").PasteSpecial xlPasteValues

End Sub

4.2.4 Select Demand Macros

Sub RoundUp()

 ThisWorkbook.Sheets("Format").Range("E3:E26").Copy

 ThisWorkbook.Sheets("Demand").Range("B2:F25").PasteSpecial xlPasteValues

End Sub

Sub Round()

 ThisWorkbook.Sheets("Format").Range("F3:F26").Copy

 ThisWorkbook.Sheets("Demand").Range("B2:F25").PasteSpecial xlPasteValues

End Sub

Sub RoundDown()

 ThisWorkbook.Sheets("Format").Range("G3:G26").Copy

 ThisWorkbook.Sheets("Demand").Range("B2:F25").PasteSpecial xlPasteValues

Katherine M. Perry

94

End Sub

Sub RoundUpwithVacancy()

 ThisWorkbook.Sheets("Format").Range("J3:J26").Copy

 ThisWorkbook.Sheets("Demand").Range("B2:F25").PasteSpecial xlPasteValues

End Sub

Sub RoundwithVacancy()

 ThisWorkbook.Sheets("Format").Range("K3:K26").Copy

 ThisWorkbook.Sheets("Demand").Range("B2:F25").PasteSpecial xlPasteValues

End Sub

Sub RoundDownwithVacancy()

 ThisWorkbook.Sheets("Format").Range("L3:L26").Copy

 ThisWorkbook.Sheets("Demand").Range("B2:F25").PasteSpecial xlPasteValues

End Sub

Katherine M. Perry

95

	The Call Center Scheduling Problem using Spreadsheet Optimization and VBA
	Downloaded from

	Microsoft Word - Thesis Document1a.docx

