

User Manual

CANape CASL
Calculation and Scripting Language

Version 1.2
English

Imprint

Vector Informatik GmbH
Ingersheimer Straße 24
D-70499 Stuttgart

Vector reserves the right to modify any information and/or data in this user documentation without notice. This documentation nor any of
its parts may be reproduced in any form or by any means without the prior written consent of Vector. To the maximum extent permitted
under law, all technical data, texts, graphics, images and their design are protected by copyright law, various international treaties and
other applicable law. Any unauthorized use may violate copyright and other applicable laws or regulations.

 Copyright 2015, Vector Informatik GmbH. Printed in Germany.
All rights reserved.

User Manual CANape CASL Contents

© Vector Informatik GmbH Version 1.2 - I -

Contents

1 Introduction 3

1.1 Objective 4

1.2 Vector Product Reference 4

1.3 CASL Scripting Language in CANape 4

1.4 Prior Knowledge 4

1.5 General Process 5

1.6 About This User Manual 5
1.6.1 Certification 6
1.6.2 Warranty 6
1.6.3 Support 6
1.6.4 Trademarks 6

2 Basic Information 7

2.1 Applications for Functions and Scripts 8

2.2 What Are Functions 8

2.3 What Are Scripts 10

2.4 Differences Between Functions and Scripts 11

2.5 Functions Editor 12

2.6 Additional Definitions 13
2.6.1 Variable Types 13
2.6.2 Arguments and In/Out Parameters (of Functions) 15
2.6.3 Comments 16
2.6.4 Taking Upper and Lower Case Into Account 16
2.6.5 Predefined Function Groups and Code Blocks of CANape 16

2.7 General System Limits 18

3 Syntax 19

3.1 Differences Between C Programming and CASL 20

3.2 Numbers and Characters 20
3.2.1 Data Types and Value Ranges 20
3.2.2 Parameter Types for Predefined Functions 21
3.2.3 Constants 21
3.2.4 Arrays 22
3.2.5 Strings 23
3.2.6 Placeholders 23

3.3 Operators 25

3.4 Control Structures (Statements) 26

4 Functions, Scripts, and Variables in CANape 29

4.1 Functions 30
4.1.1 Writing the Functions 30
4.1.2 Saving and Forwarding Functions (Exporting/Importing) 31
4.1.3 Commissioning or Instantiating Functions 32
4.1.4 Example Functions 43
4.1.5 Global Function Library 45
4.1.6 Integrating External Function Libraries 46

User Manual CANape CASL Contents

© Vector Informatik GmbH Version 1.2 - II -

4.1.7 Debugging of Functions 47

4.2 Scripts 50
4.2.1 Writing the Scripts 50
4.2.2 Saving and Forwarding Scripts (Exporting/Importing) 51
4.2.3 Task Manager 52
4.2.4 Call-up of Scripts 53
4.2.5 Script Behavior When CANape is Running 58
4.2.6 Debugging of Scripts 58
4.2.7 Example Scripts 59

4.3 Variables 61
4.3.1 Creating a Global Variable 61
4.3.2 Setting a Global Variable to a Defined Value 61
4.3.3 Setting a Local Variable to a Defined Value 63
4.3.4 Inserting a Device Variable 66

5 General Tips 67

5.1 Proper Terminating of Functions and Scripts 68

5.2 Access to System Information 68

6 Addresses 70

7 Glossary 71

8 Index 72

User Manual CANape CASL Introduction

© Vector Informatik GmbH Version 1.2 - 3 -

1 Introduction

In this chapter you will find the following information:

1.1 Objective page 4

1.2 Vector Product Reference page 4

1.3 CASL Scripting Language in CANape page 4

1.4 Prior Knowledge page 4

1.5 General Process page 5

1.6 About This User Manual page 5

 Certification

 Warranty

 Support

 Trademarks

User Manual CANape CASL Introduction

© Vector Informatik GmbH Version 1.2 - 4 -

1.1 Objective

Basic information This manual starts with an introduction to the CANape scripting language where all
associated concepts are explained in detail and distinguished from one another.

Syntax The following chapter covers the syntax of the CANape scripting language. This
chapter also serves as a reference guide.

Integrating of
functions and scripts

Another chapter describes how to integrate and check functions and scripts in
CANape.

General tips Tips on handling general issues are also provided.

1.2 Vector Product Reference

CANape The range of available functions differs depending on the respective Vector product
(CANape or vSignalyzer) as well as the type (function or script). This manual refers
exclusively to CANape. To determine whether the respective functions are also
available in vSignalyzer, please refer to the Help.

1.3 CASL Scripting Language in CANape

Proprietary scripting
language

CANape uses its own scripting language, hereinafter referred to as CASL (Calculation
and Scripting Language).

Syntax The syntax of CASL is very similar to the C programming language. It permits
developers to integrate their own C code or Simulink models.

Note: Do not confuse CASL with the programming language CAPL, which is used in
the CANoe and CANalyzer environments.

CAPL is an event-oriented programming language. So-called CAPL program nodes
are used to specify when an event will be executed and the nature of the reaction.
CASL, on the other hand, is a signal-oriented language.

1.4 Prior Knowledge

Prior programming
knowledge

This manual assumes that you have general programming knowledge in the C
programming language.

User Manual CANape CASL Introduction

© Vector Informatik GmbH Version 1.2 - 5 -

1.5 General Process

Programming
process

Five steps are needed to develop a program.

1. Think about which task is to be the primary task of the program.

2. Decide how and when the program is to be executed.

3. Develop suitable code.

4. Compile the program.

5. Test the program in CANape.

1.6 About This User Manual

To Find information
quickly

This user manual provides you with the following access help:

> At the beginning of each chapter you will find a summary of the contents.

> The header shows in which chapter of the manual you are.

> The footer shows the version of the manual.

> At the end of the user manual you will find a glossary to look-up used technical
terms.

> At the end of the user manual an index will help you to find information quickly.

Conventions In the two tables below you will find the notation and icon conventions used
throughout the manual.

 Style Utilization

 bold Fields/blocks, user/surface interface elements, window- and dialog
names of the software, special emphasis of terms.

[OK] Push buttons in square brackets

File|Save Notation for menus and menu entries

 CANape Legally protected proper names and marginal notes.

 Source Code File and directory names, source code, class and object names,
object attributes and values

 Hyperlink Hyperlinks and references.

 <Ctrl>+<S> Notation for shortcuts.

 Symbol Utilization

This icon indicates notes and tips that facilitate your work.

This icon warns of dangers that could lead to damage.

This icon indicates more detailed information.

User Manual CANape CASL Introduction

© Vector Informatik GmbH Version 1.2 - 6 -

 Symbol Utilization

This icon indicates examples.

This icon indicates step-by-step instructions.

1.6.1 Certification

Quality
Management System

Vector Informatik GmbH has ISO 9001:2008 certification. The ISO standard is a
globally recognized standard.

1.6.2 Warranty

Restriction of
warranty

We reserve the right to modify the contents of the documentation or the software
without notice. Vector disclaims all liabilities for the completeness or correctness of
the contents and for damages which may result from the use of this documentation.

1.6.3 Support

Need help? You can reach our hotline by telephone at

+49 (0)711 80670-200

or by e-mail at support@vector.com.

1.6.4 Trademarks

Protected
trademarks

All brand names in this documentation are either registered or non-registered
trademarks of their respective owners.

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 7 -

2 Basic Information

In this chapter you will find the following information:

2.1 Applications for Functions and Scripts page 8

2.2 What Are Functions page 8

2.3 What Are Scripts page 10

2.4 Differences Between Functions and Scripts page 11

2.5 Functions Editor page 12

2.6 Additional Definitions page 13

 Variable Types

 Arguments and In/Out Parameters (of Functions)

 Comments

 Taking Upper and Lower Case Into Account

 Predefined Function Groups and Code Blocks of CANape

2.7 General System Limits page 18

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 8 -

2.1 Applications for Functions and Scripts

Introduction CANape contains a function editor for writing cross-device functions and scripts.

The CASL scripting language used for this is similar to the C programming language.
For easier use, CANape provides an IntelliSense input, code blocks, and various
built-in function groups.

General applications Functions and scripts can be used to solve a variety of different tasks from simple
calculations, e.g., adding signals, to automation of CANape.

Functions are processed synchronously during a measurement. Functions are used
mainly for various calculations and applications on an existing measurement file or an
active measurement.

Scripts run independently of a measurement and are used for reproducible
automation of sequences.

2.2 What Are Functions

Introduction Functions are parts of a program code that is compiled under its own name. They can
be defined across devices in CANape.

Syntax The code of the function follows the rules of the CASL language (Calculation and
Scripting Language).

Tasks A function can be a mathematical formula or program code, for example, in which
variables stand as placeholders for signals or parameters.

 They facilitate analysis of measurement signals and enable the setting of calibration
objects as well as other interventions at the device level.

Online applications In the case of online application, functions are executed during a measurement
when triggered by an event. This occurs according to the measuring mode set in the
measurement configuration.

Thus, it is possible to

> calculate virtual measurement signals and

> enable write accesses to device memory or external measuring hardware.

Offline applications In the case of offline application, functions access existing measurement files.

Thus, it is possible to

> calculate virtual measurement file channels and

> perform Data Mining analyses.

Function structure The syntactical structure of a function is as follows:

 Key-
word

Name Arguments, in/out parameters

Function header function My_function(input, output)

Function body {

 double a = 1;

 long b = 2;

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 9 -

 output = a + b*input;

 writef("The result is: %d", output);

 return output;

}

Parameter passing When a function is called, parameters can be passed to the function. The parameters
are passed to the function generally as reference and can thus be used for the input
as well as for the output.

 For more details on the passing of parameters, see section Arguments and In/Out
Parameters (of Functions) on page 15.

Control structure
return

In addition to issuing results from functions by parameter passing, the path via the

return control structure (also keyword) can also be used. By default a value of type

double will be returned. The optional return value thus always contains a scalar.

It can be useful to return another type. For this purpose the return type must be
declared in the function header. Fields or vectors (arrays) are not allowed as return
values. An overview of all available control structures can be found in section Control
Structures (Statements) on page 26.

Example: Function header for alternative return value byte

 function byte TestFunction (signal)

{

 return 1;

}

Use The return value of functions can be reused flexibly in CANape. For example, these

can be displayed as a virtual measurement file channel in a Graphic window. For this
reason, it is recommended that an individual scalar return value be returned via

return and not via the parameter list.

 If a function is not to return a value, this can be done in one of the following three
ways:

> return

> cancel

> Neither return nor cancel are in the function code.

Note: Measurement values that are write-protected (e.g., provided with a red pointer
in the measurement list) cannot be used as an output parameter of a function.

Function call Functions can be inserted in the measurement signal list or used as a function
definition for the virtual measurement file channel (e.g., for Data Mining). They can
also be called directly from another user-defined function or a user-defined script. For
details, see section Commissioning or Instantiating Functions on page 32.

Process priority Functions – such as the measurement itself – run under CANape with very high
priority. They should therefore be kept as efficient as possible since, otherwise, the
function can influence the entire measurement (measured values may be lost, for
example). Infinite loops tie up the entire measurement and can only be interrupted by

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 10 -

actuating the <Esc> key for 3 seconds.

Limitations Because CANape processes are stopped during the measurement for functions, a
few CASL functions are not available. They would trigger a runtime error. These
CASL functions are therefore not even offered when user-defined functions are

written, e.g., this applies to the built-in script function Sleep().

Memory location Functions are saved as project-related functions in the canape.ini configuration file

in your working directory.

Function types A distinction is made in CANape between user-defined functions and CASL functions
predefined by CANape.

User-defined
functions

User-defined functions include project functions written by the user as well as
editable library functions. Both are displayed in the Symbol Explorer of CANape.

Global function
library

You obtain the library functions if you choose to have the global function library
created during the setup process (default setting). For details, see section Global
Function Library on page 45).

Project function You see the user-written functions or edited functions under Project functions in the
tree view of the Functions Editor.

Function groups By contrast, the user cannot change the CASL functions of various function groups
predefined by CANape, such as diagnostic or Flash functions. These merely execute
certain commands that you, in turn, can use within your user-defined functions and
scripts. For details, see section Predefined Function Groups and Code Blocks of
CANape on page 16.

Measurement
function

A measurement function is understood to be the combination of the function and the
measurement parameters (see section Using a Function During a Measurement on
page 35). Measurement functions are displayed under Measurement
Signal|Functions in the tree view of the measurement configuration in CANape.

2.3 What Are Scripts

Introduction Scripts are parts of the program code and can be defined across devices in CANape.

Syntax The code of a script follows the rules of the CASL language (Calculation and Scripting
Language).

 It can be written directly in the Editor window of the Functions Editor and is processed
sequentially when called.

Tasks Scripts are used in order to automate or control joint activities in CANape, such as the
starting and stopping of measurements and other system-related sequences.

 Scripts run independently of the measurement.

 They can also be used to call external models that are generated in Microsoft Visual
Studio or MATLAB/Simulink.

Script call-up Scripts can be called in different ways. For call-up from the CANape user interface,
see section Call-up of Scripts on page 53.

In addition, the script behavior can be controlled using command line options when
CANape is running (see section Script Behavior When CANape is Running on page
58).

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 11 -

Process priority of
scripts

Scripts are subject to a relatively low process priority. Their execution is guaranteed
only every 100 ms.

Debugging Debugging of scripts using breakpoints is available for diagnosing and locating logic
errors in user-defined scripts. For details, see section Debugging of Scripts on page
58.

File format and
memory location

Scripts are separate files in the *.scr or *.cns script format that can be copied to

another project directory at any time. Scripts are saved in your working directory by
default.

Example scripts CANape includes examples scripts in its various sample configurations. These are
displayed under Scripts in the tree view of the Functions Editor after the respective
sample configuration is opened. The user-defined scripts are also listed here.

2.4 Differences Between Functions and Scripts

Process priority Due to their relatively low process priority, scripts run asynchronously relative to the
measurement. Functions, on the other hand, are executed with high process priority
and synchronously with the measurement.

 As a result, limitations arise for functions such as the Sleep() script function. In

comparison to functions, scripts have a more extensive selection of predefined
function groups such as additional file and script functions, Flash functions, and
diagnostic and Data Mining functions.

Return values The RETURN keyword can return a value of data type DOUBLE (a scalar, no data
field/array, etc.) to the calling routine.

Note: Return values of scripts cannot be evaluated at present.

Debugging Unlike scripts, functions cannot be debugged using breakpoints due to their high
priority. Instead, you can output debug information in the Write window using

Write(), Writef(), Print(), or Printf() (see section Debugging of Functions

on page 47).

Subfunctions In CANape subfunctions of scripts are referred to as subfunctions. Thus,
subfunctions are not available for functions.

 The definition of the subfunction must be written before the main part of the script.
Arguments for the subfunction can be specified optionally.

 If during a measurement a Function2 is called from a different Function1, the

term subfunction would also be used for Function2 in common usage.

In CANape, however, the term subfunction is not used in this context.

Program code Scripts do not require a function header and body. The program code can simply be
written directly to the editor and is then processed sequentially.

Format Functions must be in the Functions Editor export format (*.cne) or in the ASCII text

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 12 -

format (*.txt). Scripts must be in the script format (*.scr or *.cns).

Memory location A function is saved to the canape.ini configuration file in your working directory.

Script files instead are saved as a separate file in the working directory.

Format Scripts are files in the *.scr or *.cns script format. Functions, however, are

embedded in the canape.ini.

2.5 Functions Editor

Tasks Global variables, functions, scripts, and Seed & Key algorithms can be created,
edited and compiled in the Functions Editor of CANape.

Opening the Functions Editor

1. Click the icon in the toolbar.

or

Click Functions and scripts in the Tools menu.

The Functions Editor opens.

Figure 2-1: The Functions Editor in CANape

Tree view

List view

Editor window

Message window

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 13 -

Areas of the
Functions Editor

The Functions Editor is divided into the following areas:

> Tree view

> List view

> Editor window

> Message window

Tree view The tree view lists all of the elements present.

> Global variables

> Project functions

> Scripts

> Seed & Key algorithms

List view Various tabs are located at the lower edge of the list view. Depending on the selected
tab, different information about the elements are displayed.

The information columns can be sorted by a click on the respective column header.

Message window The Output tab of the Message window displays error and progress messages.
These messages can be processed via the popup menu.

 If debugging is activated, the variables, breakpoints, and debug tasks active in each
case are also displayed here.

Note: The Functions Editor in CANape offers two types of help that enable functions
and scripts to be created with little programming knowledge.

> Context-sensitive help: Place the cursor on a function definition in the popup
menu of the Editor window and click <F1>. The help page for the corresponding
function opens.

> Automatic syntax completion: When typing in the Editor window, a suggestion
list of all available functions, objects, and global variables whose names begin with
the typed-in letters is displayed. The suggestion is applied with [Enter] or the

<Tab> key.

2.6 Additional Definitions

2.6.1 Variable Types

Agreement Variables are placeholders for values of a certain type. Variables can be declared and
defined in scripts and functions.

Definition
(Type + Value)

In the case of definition, a value is assigned to the compiler. Undefined local
variables always have the start value 0. The definition of variables thus serves to
create the type of variables and to create data objects in the memory.

Declaration
(Name + Type)

In the case of declaration, the respective variable is made known to the compiler.
The declaration always consists of the name of an object and its type. As a result,
the compiler knows which type it must connect a name to.

Global variables Global variables are declared in the list or tree view of the Functions Editor and can
be used in any function or script, for example.

Local variables Local variables can be declared in the function or script header and can also be
simultaneously defined. In/out parameters are declared in the parameter list of the
function.

Lifespan While global variables live as long as the program, local variables are only valid

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 14 -

during the block call.

Device variables A device variable can be used to access a device-internal value.

2.6.1.1 Global Variables

Uses Global variables are special data objects that can be used by all functions and scripts
in the CANape configuration.

You can use global variables to pass information to other functions or scripts without
the help of in/out parameters.

Definition Global variables are defined in the Functions Editor. One-dimensional or
multidimensional arrays as well as variables can be defined as global variables.

Memory location Global variables are saved as project-related global variables in the canape.ini

configuration file in your working directory.

Properties A global variable consists of a name, comment, data type, and conversion rule,
among other things.

Validity Global variables are valid CANape-wide. They can be inserted into a Calibration
window so that the values of the variables can be changed by the user during the
measurement.

Overwriting They are overwritten by local variables and function arguments having the same
name.

Static behavior Global variables are static. They retain their value between two measurements as
well as after loading of the project. Their current value is saved in a parameter file
when the configuration or project is saved and reloaded when loading the project.

Note: Note that values that were saved in a global variable during a prior
measurement are still present at the start of a new measurement.

Integrating in
CANape

For information on how to create a global variable, read section Creating a Global
Variable on page 61.

In addition, for a description of how you can influence when the global variable is to
be set to a defined value, see section Setting a Global Variable to a Defined Value on
page 61.

2.6.1.2 Local Variables

Validity Local variables are only valid within the respective function or script.

Overwriting They overwrite global variables of the same name and are, in turn, overwritten by
function arguments of the same name.

Declaration In contrast to C up to and including CANape 11.0, local variables can be declared
only at the start of a function or script and retain their validity throughout the function.

With CANape 12.0, a declaration within a function and within a block statement (e.g.,

If statement or for loop) is also possible.

Definition Undefined local variables always have the start value 0.

Example: In the following example function, c is a local variable and A is an in/out

parameter.

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 15 -

 function Function1 (Var A)

{

 double Result;

 Result = A;

 if (A > 0)

 {

 int c = 2; // no syntax error CANape 12.0 or higher

 Result = c;

 }

 return Result;

}

Static or non-static
behavior

Local variables can exhibit static or non-static behavior in CANape. Static behavior
means that the variables retain their value between the respective function calls.

 Below is an overview of the behavior of local variables within CANape:

Behavior Location of variable Static Non-static

 Script X

 Function in the script X

 User-defined function X

 User-defined function when called by a script X

 User-defined function when called by a user-defined
function

 X

 User-defined function when called by a script function X

Different start values If a function is used, for example, in the Data Mining environment or as a virtual
measurement file channel, CANape provides the option of assigning a different start
value of a local variable to each instance of a function.

For information on how to set a local variable to a defined value, see section Setting a
Local Variable to a Defined Value on page 63.

2.6.1.3 Device Variables

Access to device-
internal value

A device variable can be used to access a device-internal value and to change it,
when possible (database-dependent). The communication with the device takes place
in the background without the user having to explicitly take care of this.

Changes Changes to device variables act immediately on the corresponding device.

Inserting The available device variables can be viewed in the Functions Editor via the popup
menu and inserted into functions and scripts. For information on how to insert a
device variable, see section Inserting a Device Variable on page 66.

2.6.2 Arguments and In/Out Parameters (of Functions)

Passing as reference Arguments or in/out parameters are always passed to functions as reference (by

reference) and can thus also be used for return of values (see also section What

Are Functions on page 8).

 They overwrite local and global variables having the same name and can only take on

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 16 -

the equivalent var and double values as the data type.

 As a result, the following two functions are identical:

Function A function Add (var A, var B)

{

 return A+B;

}

Function B function Add (double A, double B)

{

 return A+B;

}

Parameter types Two types of parameters are possible: Scalar and array parameters.

Scalar parameters Any scalar variable, an individual array element, or a constant may be used as an
argument for scalar parameters.

Array parameters To define array parameters, [] must be placed directly after the parameter name. Any

array variable, constant strings, or global/database variables of type String may be

used as an argument for array parameters.

 Optionally, the keyword var or double may be used as the data type prefix. There is

no difference in the case of words. Other prefix types are not supported.

2.6.3 Comments

Documentation Comments are used to document a section of code within a program. They are

marked by // for a single-line comment or are placed between /* ... */ for multi-

line comments.

2.6.4 Taking Upper and Lower Case Into Account

Variable names Variable names in functions and scripts, global variables, and variables referenced
from a database in the CANape Functions Editor are case sensitive.

Device and function
names

Device names and internal function names are not case sensitive.

2.6.5 Predefined Function Groups and Code Blocks of CANape

Support CANape provides you with code blocks and various function groups to support you
when drafting your functions.

Code blocks Right click in the Editor window to open the popup menu. Select the desired code
block, e.g., a control structure. Become familiar step-by-step with the C-like syntax of
CANape's own programming language.

Function groups Select between the various CASL functions predefined by CANape. These are
organized into the following function groups:

Precompiler
directives

Precompiler directives for conditional compilation. On the basis of the precompiler
directives, the precompiler can decide based on expressions and symbols which part
of the source code can be inserted and compiled and which can be removed,

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 17 -

accordingly.

Trigonometric
functions

Trigonometric functions can be used to calculate relationships between angle and
height-width ratio.

Exponential functions Exponential functions can be used to calculate logarithms and powers and their
components.

Miscellaneous
functions

Miscellaneous functions include all functions not assigned to one of the other
groups.

Access attributes By means of the function group of the access attributes, you have access to features
of various data objects, such as measurement values, axes, and maps/characteristic
curves. Features of data objects can be color, quantity, status, address, etc.

Program functions General accesses to CANape are possible using program functions.

The following subgroups provide more specific accesses:

> User input: Shows various dialogs

> Output: Formats outputs of a string, describes the progress display

> Control: Controls the various CANape windows

> Panel: Sets stop watches and accesses control and display elements.

> Configuration: Involves configurations and partial configurations

Device functions You can use device functions to access devices directly as well as to access their
databases, drivers, status, etc.

Measurement The functions of the Measurement function group enable access to a wide range of
actions that concern measuring. In the Recorder and Trigger subgroups, you will find
functions that access the recorders and their triggering.

Calibration The functions of the Calibration function group can be used to access parameter
sets and to change the calibration mode of devices. In addition, you receive read- and
write-access to the device memory and access to the various values (physical, raw,
or string values) of objects. The block-wise modification of a device can also be
controlled.

In the Datasets subgroup, you will find the functions for handling datasets.

Evaluation The functions of the Evaluation function group enable access to the global
measurement and differential cursor and the time offset as well as to comments and
information on trigger events. In addition, portions of an integer signal can be
extracted or measurement values of a signal can be determined as a string.

Database The functions of the Database function group enable access to a unit of
measurement or names of database variables.

Flash functions Flash functions can be used to load or unload programs and parameter set files. A
parameter set can also be copied to a binary file.

Diagnostic functions Diagnostic functions ensure access to service parameters and messages (request
and response to the ECU).

In the Device functions subgroup, you will find functions that can access devices with
a diagnostics-capable driver. In addition, two functions are provided that permit
implementation of the Seed & Key method.

Script functions Script functions are used to selectively call, check, and control scripts. Error codes
and error text can be output as appropriate or command line arguments can be
determined. In addition, there is a script function for temporary loading/unloading of
function DLLs.

Data Mining
functions

Data Mining functions can start, stop, monitor, and compare Data Mining analyses
(and their methods).

String functions String functions can be used to edit and process strings or the contents of certain

User Manual CANape CASL Basic Information

© Vector Informatik GmbH Version 1.2 - 18 -

memory locations, in general. For example, there are functions for copying,
comparing, or attaching.

System and time
functions

System and time functions can return the different times of the system. In addition,
start values of other functions can be specified and their processes can be waited for.

File functions File functions can be used to handle files. For example, files can be searched for,
deleted, renamed, opened, and read. This also applies to the file-specific subgroups
HEX, MDF, PAR, and XML.

Obsolete functions The functions of this group are obsolete and should not be used anymore. However,
they are still supported by the Functions Editor.

Note: You will find more detailed information on the various function groups and code
blocks in the Help. Select the desired function or code block in the popup menu of the
Editor window and press the <F1> key.

2.7 General System Limits

Global variables The maximum number of global variables is limited by the system memory.

Local variables The maximum number of local variables is 16383.

Subfunctions The maximum number of subfunctions that can be called by a script is 10,000.

Project functions The maximum number of project functions is limited by the system memory.

Data stack The size of the data stack is 1024 entries. Its data type is double.

Call stack The maximum call depth is 64.

Argument stack Arguments for subfunctions or user function calls are stored in the argument stack.
The maximum size of an argument stack is 10,000 entries.

Line length The line length of the source code is unlimited.

Statements Each nesting in the source code (the segment between { and }) can contain about
9990 statements.

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 19 -

3 Syntax

This chapter contains the following information:

3.1 Differences Between C Programming and CASL page 20

3.2 Numbers and Characters page 20

 Data Types and Value Ranges

 Parameter Types for Predefined Functions

 Constants

 Arrays

 Strings

 Placeholders

3.3 Operators page 25

3.4 Control Structures (Statements) page 26

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 20 -

3.1 Differences Between C Programming and CASL

Differences The CANape scripting language CASL is very similar to the C programming
language. However, it differs in the following aspects:

 > CANape uses only double values for internal calculations.

> CANape does not use pointers.

Additional feature The CANape scripting language CASL has a series of additional features compared
to the C programming language.

 > A missing result type is interpreted as void.

> Arrays of any dimension and size may be passed.

> An empty parameter list is allowed like in C++.

> Overloading of functions (i.e., multiple functions with the same name but with
different parameter lists) is possible like in C++.

> A parameter check is made like in C++.

3.2 Numbers and Characters

3.2.1 Data Types and Value Ranges

Data types CANape provides the following data types for use in functions and scripts:

 Data type Value range Size/bytes

 char -128 to 127 1

 unsigned char 0 to 255 1

 byte 0 to 255 1

 short -32 768 to 32 767 2

 unsigned short 0 to 65535 2

 int -32 768 to 32 767 2

 unsigned int 0 to 65 535 2

 long -2 147 483 648 to 2 147 483 647 4

 unsigned long 0 to 4 294 967 295 4

 float -3.4·1038 to 3.4·1038 (IEEE 32 Bit) 4

 double -1.7·10308 to 1.7·10308 (IEEE 64 Bit) 8

Creating an array
from a data type

Arrays can also be created from any data type. The individual array elements in one-
and two-dimensional arrays are accessed using the [<Index>] access operator.

Example: Array of data type int
int Array[2];//Declaration

Array[0]=1;//Definition

Array[1]=3;//Definition

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 21 -

3.2.2 Parameter Types for Predefined Functions

In/out parameters Various types of parameters are available for passing data in the syntax of the
functions. These are called parameter types in CANape.

 Type Direction Description

 ARRAYREF [in/out] Reference to an array variable (local, global,
device, parameter)

 BUFFER [out] String for the assignment of an output via a
reference (local, global, device, parameter)

 OPT_INLIST [in] Optional list with input arguments

 OPT_OUTLIST [out] Optional list with output arguments

 REFERENCE [in/out] The compiler accepts scalar or array variables
that are defined via a reference.

 SIGNALREF [in/out] Signal object defined via a reference, e.g.,

<DeviceName>.<SignalName>.

Example:
sizeof(CCPsim.channel1)

 For functions requiring a value or status of the
signal at a particular time,

<file>.<signal>.mbuffer[index] can

be used, e.g., for time() or phy().

Without mbuffer, for device signals the current

state will be used; for file signals the output is
undefined.

 STRING [in] String defined via a value (const, expression,
local, global, device, parameter).

 VAL [in] Scalar value defined via a value (const,
expression, local, global, device, parameter).

 VALREF [out] Reference to a scalar variable (local, global,
device, parameter)

Function DLLs The following are available exclusively for function DLLs:

 Type Direction Description

 REFERENCE [in/out] Scalar or array

 VALUE [in] Scalar or array

3.2.3 Constants

Use in scripts When constants are used in scripts, the following must be observed for interpretation
of hexadecimal constants:

Hexadecimal
constants

Hexadecimal constants are interpreted as signed by default. In order for a

hexadecimal constant to be interpreted as unsigned, a u or U must be added.

Decimal constants Decimal constants are interpreted correctly.

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 22 -

Note: For more information on the behavior of decimal and hexadecimal constants
assigned to a variable, refer to the Help.

Single ASCII
characters

In scripts and functions no single ASCII character such as 'A' can be used. The

single quotes are already reserved for accessing signals whose names are not
ASAM-compliant.

To assign a single character to a variable, the equivalent hexadecimal notation must
be used instead.

Example:

Invalid for constants:

char letter = 'A';

Use hexadecimal equivalent instaed:

char letter = 0x41;

3.2.4 Arrays

Collection of data
elements

An array (also referred to as a field) is a collection of data elements that all have the
same name. The value within the square brackets after the array name shows either
the array size or an index value in order to specify the data. The array always begins
with index 0. The number of square brackets indicates the dimension of the array.

Passing Arrays are always passed as reference (by reference).

Language usage A one-dimensional array or a characteristic curve corresponds to a vector.

A two-dimensional or multidimensional array or a map corresponds to a matrix.

Example 1: int data[3] = {10, 20, 40};

yields: data[0] = 10, data[1] = 20, data[2] = 40

Example 2: The global array variables g_count[6][4] and g_time[6][4] are

initialized

 int i=0;

int i=0;

for(k=0;k<=5;k++)

{

 for(i=0;i<=3;i++)

 {

 g_count[k][i]=0;

 g_time[k][i]=0;

 }

}

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 23 -

3.2.5 Strings

Character string A string consists of a series of one or more sequential characters that are placed
inside double quotation marks.

Structure The last element in a string is a zero character (\0), which indicates the end of the

string. As a result, the array size is always the number of characters plus one.

Passing Strings are always passed as reference (by reference).

Example: char string[12] = "Hello World!";

3.2.6 Placeholders

Function write() The write() function outputs a string with formatting statements same as C

command printf(). The string is output in lines in the Write window of CANape.

Formatting statement The formatting statements use various placeholders

Form The placeholders have the form:

%[Flags][Field Width][.Accuracy]Type

Where Flags, Field Width, and Accuracy can be specified optionally.

Placeholders The following types of placeholders are used by the formatting statements.

Type Type Output

 x, X Case-sensitive HEX numbers of data type unsigned long (4 bytes)

 h, H HEX numbers of type unsigned short (2 bytes)

 b, B HEX numbers of type unsigned char (1 byte)

 o Octal numbers

 e, E Floating-point numbers in exponential notation

 g, G Floating-point numbers or exponential notation, depending on which is shorter

 f Floating-point numbers

 u Whole positive decimal numbers

 d, i Whole decimal numbers

 c A single character (character)

 s Strings

Examples:

 Write("%h", 0xffff); // Output: ffff

Write("%o", 10); // Output: 12

Write("%e", 12.3456); // Output: 1.234560e+001

Write("c", 0x41); // Output: A

Write("%s", "Hello"); // Output: Hello

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 24 -

Flags Any of the placeholders indicated above can be modified optionally with a flag. The
following flags can be used:

 Flag Description

 + Numbers are output right-justified with sign.

 - Numbers are output left-justified.

Negative numbers are given a sign.

 ' ' (blank
character)

Positive numbers are output with leading blank characters.

 0 The field before the number is filled with 0.

 # Type g: Forces a floating point

Type x: Receives an 0x before a HEX number

Type o: Places a 0 in front of the octal number. Trailing zeros
after the decimal point are not shown.

Examples:

 Write("%+d", 1234); //Output: +1234

Write("Wert:% d", 20); //Output: Value: 20

Write("%#g", 03); //Output: 3.00000

Write("%#x", 03); //Output: 0x03

Write("%#o", 5.1); //Output: 05

Field width The field width specifies the length of the output field.

Example: Field width 12

 long number = 12;

Write("Number:%4d", number);

//Output:

Number: 12

Accuracy The accuracy specifies the number of places after the decimal point for floating-point

numbers (e.g., of type f) and rounds the value.

Example: Accuracy of 2 places after the decimal point

 float number = 12.3456;

Write("Number:%.2f", number);

//Output:

Number: 12.35

Note: Placeholders can also be used in any other user-defined function that works

with strings (e.g., Sprint(), fprint()).

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 25 -

3.3 Operators

Processing of data
objects

The Functions Editor in CANape uses various operators for processing data objects.
Data objects that are called by operators are referred to as operands.

Objective Operators and operands are combined in order to calculate new values. The value of
an expression is often also referred to as a return value.

Overview The following operators are available:

> Arithmetic operators

> Relational operators

> Binary operators

> Logical operators

Arithmetic operators Operator Designation Syntax

 + Addition a + b

 - Subtraction a - b

 * Multiplication a * b

 / Division a / b

 % Modulo, remainder of integer division a % b

Relational operators Operator Designation Syntax

 > Greater than a > b

 < Less than a < b

 >= Greater than or equal to a >= b

 <= Less than or equal to a <= b

 == Equal to a == b

 != Unequal to a != b

 If the declaration of the syntax is confirmed, 1 (TRUE) is returned, otherwise 0

(FALSE).

Binary operators Operator Designation Syntax

 & Bitwise AND operation a & b

 | Bitwise OR operation a | b

 ~ Bitwise complement ~a

 ^ Bitwise Exclusive OR operation a ^ b

 << Bitwise Shift Left a << x

 >> Bitwise Shift Right a >> x

Logical operators Operator Designation Syntax Description

 ! Logical NOT !a If a is true (TRUE), the operation

returns false (FALSE).

 && Logical AND a && b The operation returns only TRUE if a

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 26 -

Logical operators Operator Designation Syntax Description

and b are TRUE; otherwise FALSE.

 || Logical OR a || b The operation returns only TRUE if a

or b is TRUE; otherwise FALSE.

Reference: Examples for the various operators can be found in the Help. Select the

desired operator in the popup menu of the Editor window and press the <F1> key.

3.4 Control Structures (Statements)

Influencing the
control flow

A program consists of a wide range of statements that are generally processed one
after the other. The processing sequence of statements is referred to as the control
flow. A statement that influences this control flow is therefore also called a control
structure.

 The Functions Editor of CANape uses various control structures similarly as in the C
programming language.

for The for loop is a conditional loop. It executes the statement(s) until the condition is

true (unequal to 0).

 for (Initialization; Condition; Reinitialization)

{..Statement(s)..}

while The while loop is a conditional loop. It executes the statement(s) until the condition

is not true (equal to 0). If the condition is not true (equal to 0) from the start, the

while loop, unlike the for loop, is not executed at all.

 while (Condition)

{..Statement(s)..}

do-while The do-while loop behaves like the while loop except that this loop is run through

at least once.

 do {..Statement(s)..} while (Condition);

if The if statement is a conditional branch in the program. If the condition is true

(unequal to 0), the statements within the if statement block are executed.

 if (Condition) {..Statement(s)..}

if-else The if-else statement is a conditional branch in the program. If the condition is true

(unequal to 0), the statements within the if statement block are executed. Otherwise

the statements in the else statement block are executed.

 if (Condition) {..Statement(s)..}

else {..Statement(s)..}

if-else if The if-else if statement is a chain of conditional branches in the program. The

statements within the if statement block whose condition is true (unequal to 0) are

executed. Otherwise the statements in the else statement block are executed. If no

alternative statement block (else) is needed at the end of the branch chain, the last

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 27 -

else statement can be omitted.

 if (Condition) {..Statement(s)..}

else if (Condition) {..Statement(s)..}

...

else {..Statement(s)..}

switch The switch statement is used in order to run through multiple branches in a

program. In contrast to the if-else if statement, the switch statement is simpler

and more straightforward.

The structure of a switch statement consists of a series of case labels and an

optional default label. Two constant expressions in case labels must not take on

the same value during evaluation.

The constant expression of the case labels is checked for equivalence with the

expression in switch. If the expression in a case label matches a constant, the

statements starting from this case will be executed. The default statement is

executed if the expression does not match any of the constants.

 switch (Expression)

{

 case Constant1:

 ..Statement(s)..

 break;

 case Constant2:

 ..Statement(s)..

 break;

 ...

 case ConstantX:

 ..Statement(s)..

 break;

 default:

 ..Statement(s)..

}

break The break command aborts a loop (for or while) or a switch statement

immediately.

 break;

?: The ?: statement is a conditional operator, a short form of if-else. If the condition

is true (unequal to 0), Expression1 is returned, otherwise Expression2 is

returned.

 (Condition) ? Expression1 : Expression2

continue The continue command skips the remaining statements of a loop and returns to the

start of the loop. In the case of a for or while loop, the next loop pass-through is

executed immediately. In the case of a do-while loop, the abort condition is first

tested and then the next loop pass-through is started, if necessary.

 continue;

return The keyword can be used in two ways:

User Manual CANape CASL Syntax

© Vector Informatik GmbH Version 1.2 - 28 -

It can be used to end a user-defined function, a subfunction, or a script and to return
the control back to the calling routine. If no value is to be passed to the calling routine,

return is used without a subsequent expression (return;).

However, the return keyword can also return a value of data type double to the

calling routine. Return values of scripts cannot be evaluated at present.

 return [expression];

cancel If this command is used in a function, the function is canceled without a return value.
The control is passed back to the calling routine.

If the cancel command is used in a subfunction or script, the script is terminated.

 cancel;

Note: A result value is not available for a function call that contains the cancel

command, i.e., no value is saved in the measurement file or shown in the Display
window. As a result, the command can be used, e.g., for data reduction. Or, in the
case of an ECU stimulation, the STIM message is not sent and thus the stimulated
variable(s) are not downloaded.

function The keyword function defines a user-defined function. In addition, it can be used to

define a subfunction within a script.

 function <function name> (Parameter)

Reference: Examples and detailed descriptions for the various control structures can
be found in the Help. Select the desired control structure in the popup menu of the
Editor window and press the <F1> key.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 29 -

4 Functions, Scripts, and Variables in CANape

This chapter contains the following information:

4.1 Functions page 30

 Writing the Functions

 Saving and Forwarding Functions (Exporting/Importing)

 Commissioning or Instantiating Functions

 Example Functions

 Global Function Library

 Integrating External Function Libraries

 Debugging of Functions

4.2 Scripts page 50

 Writing the Scripts

 Saving and Forwarding Scripts (Exporting/Importing)

 Task Manager

 Call-up of Scripts

 Script Behavior When CANape is Running

 Debugging of Scripts

 Example Scripts

4.3 Variables page 61

 Creating a Global Variable

 Setting a Global Variable to a Defined Value

 Setting a Local Variable to a Defined Value

 Inserting a Device Variable

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 30 -

4.1 Functions

4.1.1 Writing the Functions

Functions Editor A function can be written in the Functions Editor of CANape.

Creating functions:

1. Open the Functions Editor using the icon (see also section Functions Editor on
page 12).

2. Click with the right mouse button on Project functions|New in the tree view of
the Functions Editor.

The Properties dialog opens.

3. Name the function as desired and add a comment, if necessary.

4. Confirm your inputs with [OK].

5. Write your new function in the Editor window.

Predefined function
groups and code
blocks

CANape provides you with code blocks and various predefined CASL functions
(organized in function groups) to support you when drafting. Right click in the Editor
window to open the popup menu. For additional details, see section Predefined
Function Groups and Code Blocks of CANape on page 16.

IntelliSense Get acquainted with CANape’s IntelliSense! For example, type the starting letter(s) of
a predefined CASL function. Select the function from the automatically displayed
IntelliSense list. Use <Tab> or <Enter> or double-click with the left mouse button to
transfer the selected function to the Editor window.

 Note the information that CANape additionally displays about the function. For
example, the data type of the return value and the number of in/out parameters are
indicated here.

Figure 4-1: IntelliSense list with additional information when a letter is typed

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 31 -

Saving and compiling functions:

6. When you finish writing your function, compile the function using the icon or
the Compile|Compile menu item.

7. Note the messages output by CANape in the Message window (Output page) at
the bottom of the screen.

If the message "The program is compiled" appears, the syntax of your function is
correct. The red X that marks your function in the tree view disappears.

If an error message is displayed, try to eliminate the error with the help of the
message. The red X that marks your function in the tree view is retained.

8. Save your function with or File|Save.

The function is saved to the canape.ini configuration file in your working

directory. The asterisk that marks your function in the tree view disappears.
Functions that are not compiled can also be saved in this way.

9. Close the Functions Editor using the icon or the File|Close menu.

Note: Functions such as the measurement itself have a very high process priority in
CANape. Therefore, you should avoid long-lasting program code because it will
negatively affect the performance of your measurements, e.g., measurements might
be lost. Infinite loops tie up the entire measurement and can only be interrupted by
actuating the <Esc> key for 3 seconds.

4.1.2 Saving and Forwarding Functions (Exporting/Importing)

Saving Functions are saved in the canape.ini configuration file in your working directory.

Exporting/
importing

Functions can be exported from and imported to the Functions Editor.

Formats Functions must be present in the Functions Editor export format (*.cne) or as an

ASCII text file (*.txt) in order to be imported.

Functions present in the Functions Editor export format (*.cne), as an ASCII test file

(*.txt), or in HTML format (*.html or *.htm) are exported.

Importing functions:

1. Open the Functions Editor using the icon.

2. Select File|Import|Function.

An Explorer window opens.

3. Select the function to be imported and confirm your selection with a double click
or with [Open].

4. Functions Editor export format (*.cne): In the next prompt, select your function

and confirm your selection with [OK].

or

ASCII text file (*.txt): Confirm the properties of the function.

The imported function is displayed as an unsaved function (with asterisk) in the
tree view.

5. Save your function with or File|Save.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 32 -

Exporting functions:

1. Open the Functions Editor using the icon.

2. Select the function to be exported in the tree view.

3. In the popup menu, select Export.

or

Activate your mouse in the Editor window, Project functions page, and click
Edit|Export.

4. Select the desired export format in the dialog that appears.

5. In the Explorer window, select the desired memory location and confirm your
selection with [Save] and, if necessary, with [OK].

User-defined functions and their links are also saved in the respective

configuration (*.cna file) of the project. The functions are also stored in the

associated CANape INI file.

Forwarding linked
functions

In order, for example to make a virtual signal configured offline and its linked function
accessible to other users, you can create a new configuration. In this configuration,
you can use the desired function as a virtual measurement file channel in a Graphic
window (see section Using a Function in a Graphic Window as a Virtual Measurement
File Channel on page 33).

Importing a
configuration

You can then import this configuration elsewhere.

In CANape Versions before 11.0, you use File|Load configuration partially
exclusively for this.

In CANape Versions 11.0 and later, you can also add the new configuration to the
current configuration. To do so, select File|Configuration|Configuration manager
and select [Add] Existing configuration in the Configuration manager.

 You can deactivate the added configuration at any time in the Configuration manager.
Partial loading allows only parts of a large configuration to be added to the current
configuration.

 If you are using device values (e.g., signals) as input values for your function, you
must ensure that the utilized device is present in the current configuration.

Note: If there is only one device in the device configuration, its database is opened
automatically for selection. If there are multiple devices, you are first prompted via a
dialog to select an existing device so that its database will be used for the selection of
signals. In this way, cross-device signals can be assigned to the variables of a
function.

4.1.3 Commissioning or Instantiating Functions

Function definitions User-defined functions, i.e., library functions and project functions, are displayed
under Function definitions in the tree view of the Symbol Explorer.

 Project functions are also displayed in the tree view of the Functions Editor. The
library functions can also be imported into the Functions Editor (see section Global
Function Library on page 45).

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 33 -

Figure 4-2: Project functions in the Symbol Explorer

Instantiating a
function

In order to commission a function, it must be instantiated. This can be done in the
following ways:

> Use a function in a Graphic window as a virtual measurement file channel (for
details see section Using a Function in a Graphic Window as a Virtual
Measurement File Channel on page 33).

> Instantiate a function in the measurement signal list (for details see section Using
a Function During a Measurement on page 35).

> Execute a function when a CAN raw message is received (for details see section
Executing Functions When a CAN Signal Is Received on page 38).

> Call a function from another function (for details see section Calling a Function
From Another Function on page 41).

> Call a function from a script (for details see section Creating a Subfunction in a
Script and Calling it on page 42).

> Use a function in Data Mining as a virtual MDF signal (for details see section
Using a Function in Data Mining as a Virtual MDF Signal on page 42).

Use of functions Functions can be inserted in the measurement signal list or used as a function
definition for virtual MDF signals (e.g., for Data Mining). They can also be called
directly from another user-defined function or a user-defined script. However, this
method is not recommended when high performance is required.

4.1.3.1 Using a Function in a Graphic Window as a Virtual Measurement File
Channel

Modification of
measurement signal
via a function can be
graphically displayed

In order to graphically display modifications to an original measured measurement
signal, you can make these modifications to the measurement signal in a function and
have the result of the function displayed in a Graphic window as a virtual
measurement file channel.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 34 -

The function is then applied automatically to every sample value of the measurement
signal.

Example: You can add an offset to the original signal, scale the original signal
differently, or perform calculations from two measurement signals.

It is possible to calculate the power from input signals Current and Voltage. In

another step, the Integral() library function can be used to integrate the power

for the energy needed over the time period.

Creating a virtual measurement file channel:

1. Using drag & drop, move the desired function into the Graphic window.

Figure 4-3: Moving the function from the Symbol Explorer to a Graphic window

2. Select Virtual measurement file channel in the menu that pops up.

3. Assign your input value(s) to the function. To do so, move the desired input value
onto the desired input parameter of the function using drag & drop.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 35 -

Figure 4-4: Assigning the input value to the function

1. As an alternative to the above-indicated procedure, you can right click in the
Graphic window and select Insert|New virtual measurement file channel
from|Function.

 2. Complete the subsequent dialog as described in section Using a Function During
a Measurement on page 35.

4.1.3.2 Using a Function During a Measurement

Objective In order to use a function during a measurement, it must be created in the
measurement list of the measurement configuration. It is then also called a
measurement function.

Instantiating a function in the measurement configuration/creating a measurement function:

1. Open the measurement configuration using <F4>, the icon, or the
Measurement|Measurement configuration menu item.

2. Chose the section Measurement signals.

3. Click the icon or select the Edit|Insert function menu.

The Function dialog opens.

In the Function dialog, you can select an existing function or create a new
function.

Example: To change a calibration value cyclically, you could use the following

ToggleSignal example function with the following function definition:

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 36 -

 function ToggleSignal (Signal)

{

 if(Signal==199)

 {

 Signal=0;

 }

 else

 {

 Signal=199;

 }

}

4. In the Function dialog, use [New] to create a new function

or

use [Select] to select an existing function.

The menu guidance for creating a new function corresponds to the description in
section Writing the Functions on page 30 starting from step 3.

Figure 4-5: Function
dialog after creation of
a new function

Linking the variables Here, you can also assign any needed input values to the variables of your function.
In so doing, you choose between global variables and real or simulated (e.g.,

XCPsim) measurement signals.

You can use the example function, for example, to influence the calibration value

ampl in the XCP demo.

5. Select the corresponding Signal variable.

6. Click [Link manually].

The Link Manually dialog opens.

7. Select the XCPsim device and confirm your selection with a double click or with

[OK].

The Database Selection opens.

8. Select the calibration parameter ampl.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 37 -

9. Click Apply and close the database selection using the icon.

The link appears in the Function dialog as follows:

Figure 4-6: Variable
with assigned signal

10. Close the Function dialog with [OK].

The function will be inserted in the measurement signal list.

You can reopen the closed dialog at any time with the Edit function popup menu
command and thus change the signal linking, for example.

11. Select the measurement mode of the function, e.g., cyclic at a rate of 100.

The calibration value ampl of the example function ToggleSignal is then

calibrated regularly every 100 ms.

Note: If your function is to reset the global variables at the start of the measurement,
use measuring mode on event 'MeasurementStart'.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 38 -

Figure 4-7: Measurement signal list with example function and its measuring mode settings

Note: If there is only one device in the device configuration, its database is opened
automatically for selection. If there are multiple devices, you are first prompted via a
dialog to select an existing device so that its database will be used for the selection of
signals. In this way, cross-device signals can be assigned to the variables of a
function.

4.1.3.3 Executing Functions When a CAN Signal Is Received

Objective If you want to call your function, e.g., when a signal measured via CAN is received,
you must ensure that a CAN device is created.

Note:

There are three different options for creating a device:

> Via the menu bar with Device|New

> Via the device configuration

> By importing from an existing database and creating (Device|New
from|database)

More details are available in the CANape Help.

 In order to have your function executed when a CAN signal arrives, you can follow
practically the same procedure as in section Using a Function During a Measurement
on page 35.

1. Open the measurement configuration using the icon or the
Measurement|Measurement Configuration menu item.

2. Click the icon or select Edit|Add Function in the menu.

The Function dialog opens.

In the Function dialog, you can select an existing function or create a new
function.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 39 -

3. For example, use the CANape library function AbsoluteValue() in order to

rectify a sine-wave signal.

4. Name the function, e.g., Rectify.

5. Select the Signal variable.

6. Click [Link Manually].

The Link Manually dialog opens.

7. To use a CAN signal as an input signal, select the already created device

(CANDemo).

Figure 4-8: Manually
linking a signal

8. Confirm your selection with a double click or [OK].

The Database selection opens.

9. Click the Signals folder to display its content.

10. From the folder, select, e.g., the Channel1 signal.

Figure 4-9: Transferring
a signal from the
database

11. Click Apply and close the database selection using the icon.

The link is shown in the Function dialog.

12. Close the Function dialog with [OK].

The function will be inserted in the measurement signal list.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 40 -

Figure 4-10: Functions in the measurement signal list with different measuring modes

Result The selection of measuring mode on input or, in this case, on signal

'Channel1' causes your function to be executed each time its input value receives

a new value.

Here, Channel1 is a CAN signal that is passed to the function as an input signal.

13. Close the measurement configuration using the icon.

Figure 4-11: Functions
in the measurement
signal list of the Symbol
Explorer

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 41 -

Using a function as a
virtual measurement
channel

Now you can use your function, for example, as a virtual measurement channel by
moving it from the Symbol Explorer to a Graphic window via drag & drop (see also
section Using a Function in a Graphic Window as a Virtual Measurement File
Channel on page 33).

14. Move the function to a Graphic window using drag & drop.

Figure 4-12: Inserting a
function in the Graphic
window

Result The result of an example measurement may look like the following:

Figure 4-13: Result of a measurement (example)

4.1.3.4 Calling a Function From Another Function

Objective It is possible to call a function from another function.

Example:

 function Function1 (Var A)

{

 double Result;

 Result=A*2;

 return SecondaryFunction(Result);

}

function SecondaryFunction (Var B)

{

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 42 -

 return B+1;

}

4.1.3.5 Creating a Subfunction in a Script and Calling it

Subfunctions of
scripts

In CANape, subfunctions of scripts are referred to as subfunctions. The advantage of
subfunctions is that they can be created together with the calling functions in a single
script file and thus can also be exported in their entirety without having to transfer the
complete project.

Syntax However, they do not differ from a conventional function in regard to syntax.

Multiple subfunctions
in a script

A script may contain multiple subfunctions. However, the function definitions must
precede the main part of the source code of the script (the main part of the script
begins after the definition part of all variables and subfunctions).

Validity Subfunctions are valid only for the script in which they were defined. They cannot be
called from another script or other user-defined function. However, it is possible to

use #include to insert a script containing a set of subfunctions into another script.

4.1.3.6 Calling a Function From a Script

Objective It is also possible to call a function from a script.

Example:

 Function:

function Function1 (Var A)

{

 double Result;

 Result=A*2;

 return Result;

}

Script:

Double Output;

Output=Function1(100);

Write("%d", Output);

4.1.3.7 Using a Function in Data Mining as a Virtual MDF Signal

Data Mining Data Mining is a method for automatic offline evaluation of signals in a series of
existing MDF files. A function is applied to these measurement files in order to search
through the measurement values according to certain criteria.

Advantage For example, you can filter function results within a single search run for multiple MDF
files.

1. Select Analysis|Data Mining|Editor in the menu.

If you have not yet loaded a measurement file, a dialog appears asking whether
you want to load a measurement file.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 43 -

2. If necessary, select [Yes].

An Explorer window opens.

3. Select the desired MDF file.

4. Confirm your selection with a double click or with [Open].

The Data Mining window opens.

5. All virtual measurement file channels are displayed in the
Configuration|Methods area.

6. In addition, you can insert additional ones or create new ones by clicking
Edit|Add Function.

Creating a new function: The further menu guidance for creating a new function
corresponds to the description in section Writing the Functions on page 30
starting from step 3.

Selection: The further menu guidance for selecting an existing function
corresponds to the description in section Using a Function During a Measurement
on page 35 starting from step 3.

4.1.4 Example Functions

Example 1: User-defined function Add()

 // user function Add()

function Add(Var a, Var b)

{

 return a + b;

}

Example 2: Subfunction in a script

 // simple_sub_functions_demo.scr

// Variable definitions

Var var1;

// Subfunction definitions

Function F1()

{

var1++;

}

Function F2(Var param1, Var increment_constant)

{

 Var var2; // Local variable inside subfunction

 var2 = increment_constant;

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 44 -

 F1();

 param1 = param1 + var2; //Using parameter for output

}

Function F3(Var param1[], Var param2)

{

 write("%s : (value=%d)", param1, param2);

 return 1;

}

// Main Script Part

var1 = 0;

F1();

F2(var1, 1);

if (var1!=3)

{

 var1 = F3("Error", var1);

}

else

{

 var1 = F3("Ok", var1);

}

Write("var1 = %d", var1);

Example 3: Passing of one-dimensional array or characteristic curve

 function ChecksumBlock(var Signal1[])

{

 unsigned long DpkCtr1_Size, i;

 unsigned long changeVal;

 DpkCtr1_Size = xDimension(Signal1);

 for (i = 0; i < DpkCtr1_Size; i++)

 {

 changeVal += Signal1[i] * (i + 1);

 }

 return changeVal;

}

Note: Pay attention to the square brackets of the variables in the function header if
you want to pass characteristic curves or one-dimensional arrays to a function.

In the case of multidimensional arrays or maps, the number of square brackets must
match the number of the dimension of the respective array/map.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 45 -

For two-dimensional arrays, use two square brackets one after the other, e.g.,

Signal1[][].

4.1.5 Global Function Library

Library functions Use also the global function library included with CANape since CANape 8.0. During
the setup process, the global function library containing a few function definitions is
created by default.

This can be used unchanged or edited according to the user's needs.

The functions of the global function library are referred to as library functions.

 You will find the library functions in the Symbol Explorer under Function
Definitions|Library Functions.

1. If necessary, open the Symbol Explorer with Display|Symbol Explorer or using

the icon.

Figure 4-14: Display of
the library functions in
the Symbol Explorer

Note: The global function library contains only functions. It does not contain any
scripts, global variables, or Seed & Key algorithms.

Import from library The library functions must be imported into the Functions Editor for editing.

Export to library Likewise, modified library functions or the user's own project functions can be
exported to the global function library.

 The two commands for this can be found in the popup menu of the function in the tree
view of the Functions Editor.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 46 -

4.1.6 Integrating External Function Libraries

Expanded scope of
functions

If the scope of functions and options available to you in CANape are not sufficient,

you can write the desired functions to your own function library (extension *.dll)

outside of CANape.

Advantages Advantages of using an external function library:

> You can integrate already existing C code in CANape.

> You can solve more complex tasks than with the functions and scripts provided
by CANape.

> The DLL is executed faster because it is already compiled.

Arguments Arguments are passed either as value (by value) or as reference (by

reference).

value In the case of value, a copy of the parameter value is passed to your function (input

parameter). Changes to this parameter value in the function remain invalid for calling
programs.

CANape uses only double values for internal calculations.

For example, if arguments are passed from a CANape script to your DLL function by

value, these arguments always appear in your DLL function as double type.

reference Arrays (char arrays) or strings cannot be passed by value. For this reason, these

are always passed by reference.

For example, if arguments are passed from a CANape script to your DLL function by

reference (as reference) and are not double type, they appear in your DLL

function as a type other than double type. A char array is passed as kDtypByte, for

example.

Even if a parameter value is to be changed by the function (output parameter), you

must use the reference type.

Return value The return value of the function is always double type.

Testing the behavior You can determine the detailed behavior of CANape with other data types by
debugging your DLL file.

To do so, attach to, e.g., canape32.exe, while you call your DLL function from

CANape (e.g., in a script).

Reference: For more information on this topic, refer to the Application Note AN-IMC-

1-012_How_to_use_C-Code_Functions_in_CANape.pdf in your CANape

installation directory under Documentation. In addition, you will find example code

in the C programming language under Examples\FunctionDemoDLL\Sources.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 47 -

Integrating a DDL library:

1. Open the Tools|Options menu.

The Options dialog opens.

2. Select the Miscellaneous|Functions and Scripts area.

3. Click the [Add] button.

An Explorer window opens.

4. Select the desired DLL file.

5. Confirm your selection with [Open].

Your DLL file is shown in the list of libraries.

6. Close the Options dialog with [OK].

Figure 4-15: Integrating an external function library via the Options dialog

7. Now open the Functions Editor using the icon.

8. Then, click with the right mouse button in the Editor window.

Analogous to section Predefined Function Groups and Code Blocks of CANape
on page 16 you can now use your externally created functions in the Editor
window under the popup menu Insert|DLL functions.

4.1.7 Debugging of Functions

Objective We recommend debugging of functions for purposes of diagnosing and locating
errors in user-defined functions.

 Unlike scripts, functions cannot be debugged in the Functions Editor using
breakpoints due to their high priority.

Procedure For this reason, the output of debug information in the Write window by means of

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 48 -

program functions, such as Write, Writef, Print, or Printf must be used

instead.

Example: On the basis of the following example, the user wants to determine why the

return value of the function (Result) assumes only integer values.

 function Funktion_1 (var Input)

{

 double Result=0;

 double Offset=10;

 Long Result2=0;

 Result=Input+Offset;

 Write("Result Write: %g", Result);// line break, output

before information loss

/*

..

*/

 Result2=Result;// conversion double to long, thus information

loss

/*

*/

 Result=Result2;// reconversion to double, information loss

remains

 Print("Result Print: %g", Result);// no line break, output

after information loss

 Print("Result Print: %g", Result);// no line break

 Printf("Result Printf: %g", Result);// line break

 return Result;

}

Note: The function serves only as an example and would look much more
comprehensive in a real application.

Generating debug information in the Write window:

1. Create the example function Function_1 (see also section Writing the

Functions on page 30).

2. Create a Write window using the Display|Other windows|Write window menu.

3. Create a Graphic window using the Display|Measurement windows|Graphic
window menu.

4. Move a signal, e.g., channel1, from the Symbol Explorer to the Graphic window

using drag & drop.

5. Call the function. To do so, select between one of the following options:

a) Using a Function in a Graphic Window as a Virtual Measurement File Channel
on page 33

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 49 -

b) Calling a Function From a Script on page 42

c) Using a Function During a Measurement on page 35.

If you have only one measurement signal for debugging, you can use drag &

drop to move Function_1 directly to the Graphic window via channel1 and

create the measurement function in the measurement list.

Figure 4-16: Creating a measurement function in the measurement list using drag &
drop

6. Start the measurement with .

7. Evaluate the messages in the Write window.

Buffer size Check the buffer size of your Write window and adapt it if necessary. If the buffer size
is not sufficient, have information to that effect written to a logging file.

Configuration of
Write window

Click in your Write window with the right mouse button and select the appropriate
items under Configuration according to Figure 4-17: Configuration of Write window
on page 50.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 50 -

Figure 4-17:
Configuration of Write
window

4.2 Scripts

4.2.1 Writing the Scripts

Functions Editor Like functions, scripts can be created with the Functions Editor (see section Functions
Editor on page 12).

Creating a new script:

1. Open the Functions Editor using the icon (see also section Functions Editor on
page 12).

2. In the tree view of the Functions Editor, click with the right mouse button on
Scripts|New or select Edit|New|Script in the menu.

The Script Properties dialog opens.

3. Name the script as desired and select the directory, if necessary. The default
directory for scripts is the respective project directory.

4. Select the file type, e.g., *.cns.

Note: SCR and CNS are among the available data types. If possible, the CNS
extension should be selected in order to avoid mix-ups with Windows screensaver
files. For .NET scripts, there are additional data types. The last extension selected is
always suggested during a CANape session.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 51 -

5. Confirm your inputs with [OK].

6. Write your new script in the Editor window.

Predefined function
groups and code
blocks

Same as for the writing of functions, CANape provides code blocks and a variety of
predefined CASL functions (organized in function groups) here as well to aid your
(see section Predefined Function Groups and Code Blocks of CANape on page 16).

IntelliSense Get acquainted with CANape’s IntelliSense! For example, type the starting letter(s) of
a predefined CASL function. Select the function from the automatically displayed
IntelliSense list. Use <Tab> or <Enter> or double-click with the left mouse button to
transfer the selected function to the Editor window.

 Note the information that CANape additionally displays about the function (see also
IntelliSense on page 30).

Inserting device variables in a script:

1. In the popup menu of the Editor window, click Insert|Variable|Device variables
and the relevant device, e.g., CCPsim.

The Database selection opens.

2. Select the desired variable, e.g., ampl.

3. Confirm your selection with a double click or with Accept.

4. Your selected device variable, e.g., CCPsim.ampl, will be written in your script.

Compiling and saving a script:

1. When you finish writing your script, compile the script using the icon or the
Compile|Compile menu item.

2. Note the messages output by CANape in the Message window (Output page) at
the bottom of the screen.

If the message "The program is compiled" appears, the syntax of your script is
correct. The red X that marks your script in the tree view disappears.

If an error message is displayed, try to eliminate the error with the help of the
message. The red X that marks your script in the tree view is retained.

3. Save your script using or File|Save.

Each script is stored as an identically-named file with the previously selected
extension in the working directory. The asterisk that marks your script in the tree
view disappears. Scripts that are not compiled can also be saved in this way.

4. Close the Functions Editor using the icon or the File|Close menu.

Note: When writing, note that scripts in CANape are subject to a relatively low
process priority. Their execution is guaranteed only every 100 ms.

4.2.2 Saving and Forwarding Scripts (Exporting/Importing)

Saving The created scripts are stored automatically in the working directory as a script file.
You can add further directories in the Functions Editor. The file type of the script file
you have already selected when creating the new script.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 52 -

Exporting/
importing

Scripts can be exported from and imported to the Functions Editor.

Formats Scripts are exported in the respective script format (e.g., *.scr) or HTML format

(*.html or *.htm).

Scripts must be present in the script format (*.scr or *.cns) in order to be

imported.

4.2.3 Task Manager

Starting the scripts The Task Manager provides you the option of starting scripts automatically and
manually.

1. Open the Task Manager by clicking the icon (Open Task Manager) or using
the menu under Tools|Task Manager.

Figure 4-18: Task Manager

2. Insert the desired script using the [Insert] button.

3. In the Startup column, you can choose between various events and thus specify
when your script is to be started.

Start types: > Manual

> When the project is loaded (and thus automatically when CANape is started)

> When the project is closed (and thus automatically when CANape is ended)

> When the measurement is completed

> After synchronization of the memory image

> When a measurement file is loaded

> When a measurement file is updated

> When the global measurement cursor is activated, moved, and deactivated.

> When a measurement is started (the execution of the script is started at the same
time as the measurement)

> Before a measurement is started (at the start of a measurement, the
corresponding script is executed; when the script is complete, the measurement
starts).

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 53 -

Note: The measurement start is thus delayed by the execution time of
the script.

4. If you choose Manual for the startup, you can initiate the script execution by
pressing the [Start] button.

5. If you would like to edit a script, select it and click [Edit].

The Functions Editor with toolbar, Editor window, and Message window opens.

Note: The modified script must be compiled before exiting the Functions Editor.

6. In the current_device= column, it is possible to select the device in the device
configuration for which the script is to be executed.

If the universal device prefix current_device is used in the script and the column
contains the entry <none> (default entry), a dialog, appears in which the device
must be selected.

Note: Scripts with the same automatic start type (e.g., "At start of measurement") are
started one after the other in the order in which they appear in the Task Manager.

This does not pose a problem for scripts that are processed independently of one
another.

However, if a script is not to be started until another script has been completed
beforehand (e.g., one script initializes variables and the next script uses these
initialized variable), a main script should be called in the Task Manager that executes

the individual scripts one after the other using the CallScript() function (see also

section Call-up of Scripts on page 53).

Important: If values are assigned via scripts (e.g., ampl=4), this change takes effect

immediately in online mode even if direct calibration is not activated (in the
Calibration|Direct calibration menu). To go offline, click Calibration|Go offline in

the menu.

4.2.4 Call-up of Scripts

Multiple options Scripts can be called in various ways in CANape. You can use one of the following
options:

> Executing a Script Via the Menu Bar of CANape, see page 54

> Calling a Script Via the Task Manager, see page 54

> Executing a Script From the Functions Editor, see page 54

> Calling a Script From Another Script, see page 55

> Calling a Script Via a Control on a Panel, see page 56

> Calling a script when executing CANape, see section Script Behavior When
CANape is Running on page 58

Write window In a Write window, you can track the commands executed according to the script, the
status messages, and the error messages of the driver as well as values of functions
and scripts.

ms-its:syntax49.chm::/topics/HID_current_device.htm
mk:@MSITStore:D:/Programme/CANape/11/SP3/Exec/CANape49.chm::/topics/kDlgSelectCurrentDevice.htm

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 54 -

Opening a Write window:

1. Open the Write window via the menu bar Display|Other windows|Write
window.

4.2.4.1 Executing a Script Via the Menu Bar of CANape

Objective You can execute scripts directly via the menu bar of CANape.

1. Select Tools|Execute script in the menu.

An Explorer window opens.

2. Select the desired script file, e.g., Script_1.cns.

3. Confirm your selection with a double click or with [Open].

4. The script is executed.

Important: If values are assigned via scripts (e.g., ampl=4), this change takes effect

immediately in online mode even if direct calibration is not activated (in the
Calibration|Direct calibration menu). To go offline, click Calibration|Go offline in
the menu.

4.2.4.2 Calling a Script Via the Task Manager

Objective You can execute scripts directly from the Task Manager using the manual startup.

Because you can also open the Functions Editor from the Task Manager, you can
likewise call a script there.

1. Open the Task Manager by clicking the icon (Open Task Manager) or using
the menu under Tools|Task Manager.

2. Insert the desired script using the [Insert] button.

3. If you choose Manual for the startup, you can initiate the script execution by
pressing the [Start] button.

or

If you have selected an automatic startup, you can use the [Edit] button to open
the Functions Editor and call the script from there (see section Executing a Script
From the Functions Editor on page 54).

4.2.4.3 Executing a Script From the Functions Editor

Objective You can execute a created script from the Functions Editor directly after compilation.

1. Open the Functions Editor using the icon.

2. Select the script to be executed in the tree view.

3. Click the icon or select Debug|Execute script in the menu in order to execute
the script.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 55 -

4.2.4.4 Calling a Script From Another Script

Objective You can call a subscript from a main script.

Advantage This is advantageous when you want to ensure a certain chronological sequence of
your commands.

Example: In the following example, you see how return values can be returned to the
main script using this option:

 SubScript.cns:

Double Result=0;

Result++;

Write("Result SubScript: %d", Result);

return Result

 MainScript.cns:

Double Result;

int i;

ClearWriteWindow();

for (i=0; i<=10;i++)

{

 Result=CallScript("SubScript.cns",true);

 Write("Result MainScript: %d", Result);

}

Example: In the following example, you see how arguments/parameters can be

passed to the subscript:

 SubScriptWithArguments.cns:

long i, nArgs;

char argBuffer[256];

nArgs = GetArgCnt();

Write("Number of specified arguments: %d", nArgs);

for(i = 0; i < nArgs; i++)

{

 GetArg(i, argBuffer);//Get the i. script argument

 Write("Argument %d: %s", i+1, argBuffer);

}

 MainScript.cns:

CallScriptEx("SubScriptWithArguments.cns", "Argument_1

Argument_2 Argument_3");

 If the arguments contain blank spaces or paths, these must be passed as follows:

 MainScript.cns:

CallScriptEx("SubScriptWithArguments.cns",

"MyFirstArgument \"My argument containing spaces\" \"C:\\My

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 56 -

Path\\My Data File.dat\"");

4.2.4.5 Calling a Script Via a Control on a Panel

Objective Scripts can also be started by controls, such as a button, in CANape.

Requirement You must first create a panel or insert an existing panel in CANape.

Creating a panel:

1. Click the icon or the Tools|Panel Designer menu.

The Vector Panel Designer window opens. It consists of the toolbar, the panel
view, the toolbox, the properties, and the Output window.

2. Move the Button control from the Toolbox to the panel surface using drag &
drop.

3. Specify the Text to be displayed on the button, e.g., "execute script", under
Properties.

Figure 4-19: Vector
Panel Designer window

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 57 -

4. Click the Assign Label link.

The Define Label dialog opens.

5. Under Label, enter the name for the control, e.g., Scriptstart.

6. Confirm your input with [OK].

7. Save the panel under the desired name in the desired directory.

8. Close the Panel Designer.

Now you can insert the panel in CANape, see Inserting an existing panel.

Inserting an existing panel:

1. Select Display|Other windows|Panel window.

An Explorer window opens.

2. Select your panel file, e.g., Panel1.xvp.

3. Confirm your selection with a double click or with [Open].

The Links dialog opens.

The individual controls of the panel are linked to the corresponding data objects
here.

Figure 4-24: Links dialog

4. Open the popup menu of the Scriptstart control and select Link with script

there.

or

On the Links page, select the Script|Link with script menu.

An Editor window opens.

5. Select the script that is to be executed when the Scriptstart control is

actuated, e.g., Script_1.cns.

6. Confirm your selection with a double click or with [Open].

The selected script is now displayed in the appropriate column of the Links
dialog.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 58 -

7. Confirm the created link with [OK].

8. Now, when you click your button in the Panel window, your script will be
executed.

Changing the script
assignment

You change the script assignment at any time by clicking your panel with the right
mouse button and selecting Link Data Objects.

9. To do so, click your panel with the right mouse button and select Link data
objects.

The Links dialog opens. You can change your script assignment using the popup
menu of the control or the Script menu.

4.2.5 Script Behavior When CANape is Running

Command line
options

Three different CANape command line options configure the script behavior when
CANape is running. These options can be added to the destination in the properties
dialog of the link that is used for starting CANape.

Syntax canape32.exe [Options] [File]

-b Script File <*.scr> Starts the specified script file (batch mode).

-bc Script File <*.scr> Script
Argument

Starts the specified script file with the specified arguments (batch
mode).

-PATH SCR "path" Sets the path from which script files are selected for immediate
execution.

Note: The path ("path") must be written in quotation marks if it contains blank spaces.
It can be specified as an absolute path or relative path to the current working directory
(project directory).

4.2.6 Debugging of Scripts

Objective We recommend debugging of scripts for purposes of diagnosing and locating errors in
user-defined scripts.

Breakpoints In order to execute scripts only up to a certain code line, you can set breakpoints in
the Functions Editor.

The Breakpoints page of the Message window displays all the set breakpoints. You
can use the popup menu to delete and activate/deactivate breakpoints or to navigate
to the corresponding source text.

During debugging, you can examine all values of your variables on the Variables
page of the Message window.

Setting breakpoints

1. You can set a breakpoint in the Functions Editor by clicking the left side (gray
column) of the Editor window.

or

Place the cursor inside the line in which a breakpoint is to be set and select the
 icon (Toggle Breakpoint on current line).

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 59 -

Figure 4-20: Breakpoint in the Editor window

Debugging

2. In order to execute the script up to (and including) the breakpoint, click the icon
(Start Debugging current script).

3. To stop the script, simply select (Stop Script).

4. With (Step In), you go through each individual line of your program.

The debugger then also jumps into called scripts and functions.

5. You can exit these again with the icon (Step Out).

6. On the other hand, use (Step Over) if you are not interested in the details of a
script or function that you call from your overlying main script.

4.2.7 Example Scripts

Simple examples Below are a few simple examples that can be used multiple times:

> Load parameter set

CCPsim.LoadParameterset()

> Measurement Start/Stop:

Start();

Stop();

> Measure and Calibrate:

x = CCPsim.ampl;

CCPsim.ampl = x;

> Send e-mail:

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 60 -

SendMail();

> Send CAN messages:

<Device>.SendMessage(0x1a1,0xff,0x7f)

Example 1: In the following script, sequentially ordered statements are executed

automatically after the CCP Demo project is loaded:

1. Start measurement.

2. Seconds after the measurement start, the PWM_Level parameter is calibrated to

5 volts.

3. After an additional 3 seconds, the measurement stops.

 Start();

Sleep(5000);

CCPsim.PWM_Level=5;

Sleep(3000);

Stop();

Example 2: In the following script, sequentially ordered statements are executed

automatically after the CCP Demo project is loaded:

1. Open and clear Write window.

2. The value of the ampl parameter is cyclically increased until it reaches a

predefined limit.

This limit is defined in global variable MaxValue. The value can also be changed

in a Calibration window when the measurement is active.

3. Reset parameter to 1 when the limit is reached.

 //Prepare the Write window

OpenWriteWindow();

ClearWriteWindow();

//Endless loop

while (1==1){

 //Check if the value of the global variable MaxValue is

between 0 and 50.

 if (MaxValue < 0 || MaxValue > 50) MaxValue = 10;

 //Increment the parameter ampl from device ccpsim by step 1

 //if the current value is less than the value of MaxValue

 if (CCPsim.ampl >= MaxValue)

 {

 CCPsim.ampl = 0;

 Write("MaxValue reset on 0, real value:%d", CCPsim.ampl);

 }

 CCPsim.ampl = CCPsim.ampl+1;

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 61 -

 //Wait 1 s

 Sleep (1000);

}

Additional example
scripts

CANape includes additional example scripts in its various sample configurations.
These are displayed under Scripts in the tree view of the Functions Editor after the
respective sample configuration is opened.

4.3 Variables

4.3.1 Creating a Global Variable

1. Open the Functions Editor using the icon (see also section Functions Editor on
page 12).

2. In the Global Variables tree view, select the New popup menu command.

The Variable dialog opens.

3. Name the variable as desired, e.g., gVarDouble, and assign the desired data

type and other properties to it.

4. Confirm your inputs with [OK].

The Variable dialog closes and the newly created variable is displayed in the tree
view.

5. Once the variable has been saved, it is no longer marked with an *.

6. Close the Functions Editor using the icon or the File|Close menu.

Your global variable is also displayed under Devices|Global variables in the tree
view of the Symbol Explorer.

4.3.2 Setting a Global Variable to a Defined Value

Defining a value You can influence when the global variable is to be set to a defined value.

 For example, if you want to reset or initialize your global variable at the start of a
measurement, you can do this by:

> Writing your own function (e.g., Reset_gVarDouble()), or

> Executing a script

Initializing using your own function:

1. In the Editor window, create the example function Reset_gVarDouble as

follows (see also section Writing the Functions on page 30):

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 62 -

 function Reset_gVarDouble()

{

 // Enter the code here

 gVarDouble = 0;

 Write("The global variable gVarDouble was changed to the

value %f.",gVarDouble);

 return;

}

2. Compile the function with and save it.

3. Move the global variable gVarDouble from the Symbol Explorer

(Devices|Global Variables area) to a free area of your display page.

The possible Display and Calibration windows are provided for selection.

4. Select Default window.

A Calibration window with global variable gVarDouble and the value 0 is
displayed.

5. Open the measurement configuration using <F4>, the icon, or the
Measurement|Measurement Configuration menu item.

6. In the popup menu, select Add Function.

The Function dialog opens.

7. Click the [Select] button.

A Selection of function definitions opens.

8. Select gVarDouble and confirm your selection with a double click or [OK].

9. Close the Function dialog with [OK].

10. In the measurement configuration, set the measuring mode of your function to on

event 'MeasurementStart'.

11. Close the measurement configuration with .

12. Set the value of your global variable gVarDouble in the Calibration window to,

e.g., 4 (go to the cell with a double click, change the value, and <Enter>.

13. Start a measurement with .

The value of your global variable gVarDouble in the Calibration window is

initialized to 0.

Figure 4-21: Calibration window with modified value = 4 Figure 4-22: Calibration window with initialized value

Initializing using a script:

1. In the Editor window, create the example script Reset_gVarDouble as follows

(see also section Writing the Scripts on page 50):

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 63 -

 gVarDouble = 0;

Write("The global variable gVarDouble was changed to the

value %f.",gVarDouble);

2. Compile the script with and save it.

3. Create a Calibration window with the global variable gVarDouble (see steps

3 to 4 above).

4. Also create a Write window for better monitoring via Display|Other
windows|Write window.

5. Open the Task Manager using the icon and use [Insert] to insert the newly

created Reset_gVarDouble script (see also section Task Manager on page

52).

6. Set the Startup of the script to Before the measurement.

7. Select the Reset_gVarDouble script and click [Start].

The script is executed. The value of your global variable gVarDouble in the

Calibration window is initialized to 0.

Figure 4-23: Display of the Write window after executing the Reset_gVarDouble script

Note: By means of a predefined CASL function of the "Program functions" function

group UpdateCalibrationWindows(), you can also have the start values

displayed in the Calibration windows automatically.

4.3.3 Setting a Local Variable to a Defined Value

Different start values If a function is used, for example, in the Data Mining environment or as a virtual
measurement file channel, CANape provides the option of assigning a different start
value of a local variable to each instance of a function. A comment can also be
provided for this. It can be seen later under the properties of the function (see section
Writing the Functions on page 30).

Example: An example of this is the library function MovingAverage() of CANape:

 function MovingAverage(var signal)

{

 //! number of last measure values to be used for the

calculation

 int smoothFactor = 4;

....

//! The local variable smoothFactor is initially assigned the value 4 here. By adding

//! in front, this variable can assigned a different start value in the properties of a

virtual measurement file channel, for example. All characters that appear after //!

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 64 -

can also be seen in the properties as information.

Setting another start value (if function is used as a virtual measurement file channel):

1. Move the library function MovingAverage() to an empty area of a display page

using drag & drop.

The possible Display and Calibration windows are provided for selection.

2. Select Default window.

A Graphic window is displayed, and Virtual measurement file channel and
Measurement function are available for selection.

3. Click Virtual measurement file channel.

The virtual measurement file channel is displayed in the Graphic window.
However, an input signal is not yet assigned to the function.

4. Select Properties in the popup menu of the Graphic window.

The Properties dialog opens.

5. Select the line for the input signal and click [Link manually].

6. Select XCPsim in the Link manually dialog that pops up.

7. Confirm your selection with a double click or [OK].

The Database Selection opens.

8. Select the channel1 measurement signal.

9. Click Apply and close the database selection using the icon.

10. In the Properties dialog, now select the line with the function parameter

smoothFactor and click [Change parameter value].

11. Enter the new value for the initialization, e.g., 10, in the dialog that pops up.

12. Confirm your input with [OK].

13. Confirm your changes in the Properties dialog with [OK].

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 65 -

Figure 4-24: Local variable smoothFactor is assigned a start value of 10.

User Manual CANape CASL Functions, Scripts, and Variables in CANape

© Vector Informatik GmbH Version 1.2 - 66 -

4.3.4 Inserting a Device Variable

1. Open the Functions Editor using the icon (see also section Functions Editor on
page 12).

2. Select Device variables in the popup menu of the Editor window of the Functions
Editor.

The created devices are displayed, e.g., CCPsim.

3. Click the desired device CCPsim.

The Database selection of the device containing the available device variables
opens.

4. Select the desired device variable with a double click.

5. Close the database selection with .

The inserted device variable is located in the function/script as follows:

<DeviceName>.<VariableName>.

Note: If the variable name contains one or more dots, the name string must be placed
in single quotation marks, e.g.,
KWPsim.'ECU_Identification.Ident_Digit_1_0'

Access in the case of
multiple use

If a CAN signal is listed more than once in a DBC file, a script or function can be used
to access it.

value = <CANdevice>.'$<CAN message name>$<signal>';

User Manual CANape CASL General Tips

© Vector Informatik GmbH Version 1.2 - 67 -

5 General Tips

This chapter contains the following information:

5.1 Proper Terminating of Functions and Scripts page 68

5.2 Access to System Information page 68

User Manual CANape CASL General Tips

© Vector Informatik GmbH Version 1.2 - 68 -

5.1 Proper Terminating of Functions and Scripts

Terminating with
cancel

If, for example, a parameter has reached a certain value, the control structure

cancel can be used to terminate a function or script.

 If the cancel command is used in a function, the function is aborted without a return

value. The control is passed back to the calling routine.

If the cancel command is used in a subfunction or script, the script is terminated

immediately.

Example: If [Yes] is selected in the called dialog (return value is 0), the script is

terminated.

 long result;

result = UserQueryDialog ("Yes | No", /*buttons*/

0, /*question*/ "Do you want to cancel the script?");

if (result == 0)

{

 cancel;

}

print("Continue...");

Terminating with
break

The break command aborts a loop (for or while) or a switch statement

immediately.

Example: The break command aborts a for loop.

 // break

long i;

for (i = 0; i < 15; i++)

{

if (i == 10)

 {

 break;

 }

}

Write("i = %d", i);

5.2 Access to System Information

Device System The option exists in CANape to use system information in scripts. The corresponding

option must be activated for this. This option causes a System device with a wide

range of different system variables to be created.

Uses This approach allows you to use individual variables of the system in scripts.

User Manual CANape CASL General Tips

© Vector Informatik GmbH Version 1.2 - 69 -

Activating system information:

1. In the menu bar, click Tools|Options.

The Options dialog opens.

2. Select Miscellaneous|System information in the tree view of the Options
dialog.

3. Activate the check box of the system information on the right side of the dialog.

A device named System is created in the device configuration. This device is

listed in the list display on the right but not in the tree display on the left.

The device is also displayed in the Symbol Explorer.

Example 1: Output of system information in the script

 Write("%s",System.'Windows.User.UserDisplayName');

Write("%s",System.'Windows.User.UserLoginName');

Example 2: In the measurement file name, you can use a macro that evaluates a

script. The script could then appear as follows:

 char buffer[100];

SPrint(buffer, System.'Windows.User.UserDisplayName');

SetScriptResult ("%s", buffer);

User Manual CANape CASL Addresses

© Vector Informatik GmbH Version 1.2 - 70 -

6 Addresses

Vector knowledge
base

Brief articles about various questions can be found in the Vector Knowledge Base at:

http://www.vector.com/vi_knowledgebase_en.html

Addresses on Vector
homepage

Please find the contacts of Vector Informatik GmbH and all subsidiaries worldwide
via:

http://www.vector.com/vi_addresses_en.html

http://www.vector.com/vi_knowledgebase_en.html

User Manual CANape CASL Glossary

© Vector Informatik GmbH Version 1.2 - 71 -

7 Glossary

Argument When a function is called, (command line) arguments can be passed to the function.

Array An array is a field of variables of the same type.

ASCII ASCII is the acronym for the American Standard Code for Information Interchange.
It represents the standard method for coding alphabetic, numeric, and control
characters in 7-bit-form.

CASL CANape uses its own scripting language, also referred to as CASL (Calculation and
Scripting Language).

Debugging Diagnosing and locating of logic errors

Function A function is started when triggered by events and is processed synchronously
during a measurement.

Function parameter Arguments and in/out parameters are also generally referred to simply as function
parameters.

Global variable Global variables are special data objects that can be used by all functions and
scripts in the CANape configuration.

Compiling A compiler compiles human-readable source text into the machine language
understood by the computer. Syntax errors are identified during compilation.

Control structure The processing sequence of statements is referred to as the control flow. A
statement that influences this control flow is therefore also called a control structure.

Local variable Local variables are only valid within the respective function or script.

MDF file MDF stands for Measurement Data Format. The MDF format is a binary file format
for saving measurement data. CANape saves the measured data in this format. For
this reason, the term "measurement file" is often used, which is synonymous with
MDF file.

Measurement
function

A measurement function is understood to be the combination of the function and the
measurement parameters. Measurement functions are displayed under
Measurement signal|Functions in the tree view of the measurement configuration.

Parameter types Various types of parameters are available for passing data in the syntax of the
functions.

Precompiler Preprocessor

Script A script can be started independently of an active measurement. It can be called
externally and is executed in parallel with a measurement.

In/out parameter When a function is called, in/out parameters can be passed to the function.

Virtual measurement
file channel

A virtual measurement file channel is used to describe when a seemingly real
(virtual) signal from measurement values of previously stored measurements is to
be used.

User Manual CANape CASL Index

© Vector Informatik GmbH Version 1.2 - 72 -

8 Index

A

Activating system information 69

Array parameters 16

C

Command line options 58

Creating a global variable: 61

Creating a measurement function 35

Creating a virtual measurement file channel 34

D

Device variable
Inserting 66

Introduction 15

F

Function
Calling 33

Compiling 31

Creating 30

Debugging 47

Exporting 32

Importing 31

Saving 31

Writing 30

Function types 10

Functions Editor 12
Opening 12

User interface 13

G

Global function library 45

Global variable
Initializing (using a script) 62

Initializing (using your own function) 61

I

Integrating a DLL library 47

L

Library functions 45

Local variable
Setting the start value 64

O

Opening a Write window: 54

P

Panel
Creating 56

Inserting 57

Parameter types 16

Placeholder
Type 23

Placeholders 23
Accuracy 24

Field width 24

Flag 24

S

Scalar parameters 16

Script
Calling 53

Compiling 51

Creating new 50

Debugging 58

Importing/exporting 52

Inserting a device variable 51

Saving 51

Starting 52

Writing 50

Setting breakpoints 58

Start types 52

T

Task Manager 52

V

Vector element 22

User Manual CANape CASL Index

© Vector Informatik GmbH Version 1.2 - 73 -

Vector variable 22 Vectorial variable 22

Get more Information!

Visit our Website for:

> News

> Products

> Demo Software

> Support

> Training Classes

> Addresses

www.vector.com

http://www.vector-worldwide.com/

	1 Introduction
	1.1 Objective
	1.2 Vector Product Reference
	1.3 CASL Scripting Language in CANape
	1.4 Prior Knowledge
	1.5 General Process
	1.6 About This User Manual
	1.6.1 Certification
	1.6.2 Warranty
	1.6.3 Support
	1.6.4 Trademarks

	2 Basic Information
	2.1 Applications for Functions and Scripts
	2.2 What Are Functions
	2.3 What Are Scripts
	2.4 Differences Between Functions and Scripts
	2.5 Functions Editor
	2.6 Additional Definitions
	2.6.1 Variable Types
	2.6.1.1 Global Variables
	2.6.1.2 Local Variables
	2.6.1.3 Device Variables

	2.6.2 Arguments and In/Out Parameters (of Functions)
	2.6.3 Comments
	2.6.4 Taking Upper and Lower Case Into Account
	2.6.5 Predefined Function Groups and Code Blocks of CANape

	2.7 General System Limits

	3 Syntax
	3.1 Differences Between C Programming and CASL
	3.2 Numbers and Characters
	3.2.1 Data Types and Value Ranges
	3.2.2 Parameter Types for Predefined Functions
	3.2.3 Constants
	3.2.4 Arrays
	3.2.5 Strings
	3.2.6 Placeholders

	3.3 Operators
	3.4 Control Structures (Statements)

	4 Functions, Scripts, and Variables in CANape
	4.1 Functions
	4.1.1 Writing the Functions
	4.1.2 Saving and Forwarding Functions (Exporting/Importing)
	4.1.3 Commissioning or Instantiating Functions
	4.1.3.1 Using a Function in a Graphic Window as a Virtual Measurement File Channel
	4.1.3.2 Using a Function During a Measurement
	4.1.3.3 Executing Functions When a CAN Signal Is Received
	4.1.3.4 Calling a Function From Another Function
	4.1.3.5 Creating a Subfunction in a Script and Calling it
	4.1.3.6 Calling a Function From a Script
	4.1.3.7 Using a Function in Data Mining as a Virtual MDF Signal

	4.1.4 Example Functions
	4.1.5 Global Function Library
	4.1.6 Integrating External Function Libraries
	4.1.7 Debugging of Functions

	4.2 Scripts
	4.2.1 Writing the Scripts
	4.2.2 Saving and Forwarding Scripts (Exporting/Importing)
	4.2.3 Task Manager
	4.2.4 Call-up of Scripts
	4.2.4.1 Executing a Script Via the Menu Bar of CANape
	4.2.4.2 Calling a Script Via the Task Manager
	4.2.4.3 Executing a Script From the Functions Editor
	4.2.4.4 Calling a Script From Another Script
	4.2.4.5 Calling a Script Via a Control on a Panel

	4.2.5 Script Behavior When CANape is Running
	4.2.6 Debugging of Scripts
	4.2.7 Example Scripts

	4.3 Variables
	4.3.1 Creating a Global Variable
	4.3.2 Setting a Global Variable to a Defined Value
	4.3.3 Setting a Local Variable to a Defined Value
	4.3.4 Inserting a Device Variable

	5 General Tips
	5.1 Proper Terminating of Functions and Scripts
	5.2 Access to System Information

	6 Addresses
	7 Glossary
	8 Index

