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IMPULSIVE DIFFERENTIAL EQUATION MODEL IN
HIV-1 INHIBITION. ADVANCES IN DUAL INHIBITORS OF

HIV-1 REVERSE TRANSCRIPTASE & INTEGRASE FOR THE
PREVENTION OF HIV-1 REPLICATION

S. MONDAL, J.F. PETERS, P. GHOSH, AND A.K. SARKAR

Abstract. This paper introduces an impulsive differential equation frame-
work for calculating an effective dosing regimen for applying the dual inhibitors
of HIV-1 reverse transcriptase (RT) and integrase (IN). Reverse transcriptase
(RT) and integrase (IN) are two pivotal enzymes in HIV-1 replication. RT con-
verts the single-stranded viral RNA genome into double-stranded DNA and IN
catalyses the integration of viral double-stranded DNA into host DNA. The
most successful treatment strategy for HIV-1 infection is Highly Active An-
tiretroviral Therapy (HAART), a combination of integrase inhibitor or entry
inhibitor with reverse transcriptase inhibitor and protease inhibitor. Although
HAART could successfully suppress the HIV-1 viral load and prevent the pro-
gression of HIV-1 infection into AIDS, it has several drawbacks, namely, long-
term side effects, emergence of drug resistance profiles, poor patient compli-
ance and intolerable toxicities. Currently, dual inhibitors of HIV-1 RT and IN
have become a hotspot in new anti-HIV drug research and development. A
dual inhibitor of HIV-1 RT/IN does the same thing as the two independent
drugs would do. In this article, we have studied the therapeutic benefit of
dual inhibitor of HIV-1 RT/IN which simultaneously works as non-nucleoside
reverse transcriptase inhibitor (NNRTI) and integease inhibitor. By using im-
pulsive differential equations, we have determined a periodic dosing regimen for
applying the dual inhibitor of HIV-1 RT/IN. Analytically we have shown the
non-negativity, boundedness of the HIV-1 RT/IN catalysed reaction model and
established the existence condition and local stability of the periodic solution
at steady-state for the case of multiple dose administration of dual inhibitor
of HIV-1 RT/IN to controlling the replication process. The results obtained
from analytical as well as numerical study provide a basic idea to investigate
the minimum dose with highest efficacy and to calculate an effective and safe
dosing interval of dual inhibitors of HIV-1 RT/IN to beat the virus.

Contents

1. Introduction 2

2010 Mathematics Subject Classification. 35R12 (Impulsive differential equations); 35B10 (Pe-
riodic solutions to differential equations).

Key words and phrases. AIDS, Dual Inhibitors,d HIV, Impulsive differential equation, Inte-
grase, Reverse Transcriptase.

The research by J.F. Peters has been supported by the Natural Sciences & Engineering Research
Council of Canada (NSERC) discovery grant 185986 and Instituto Nazionale di Alta Matematica
(INdAM) Francesco Severi, Gruppo Nazionale per le Strutture Algebriche, Geometriche e Loro
Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific and Technological Re-
search Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BIDEB) under
grant no: 2221-1059B211301223.

1



2 S. MONDAL, J.F. PETERS, P. GHOSH, AND A.K. SARKAR

2. Preliminaries 4
3. Model Property 8
3.1. Non-negativity and Boundedness 9
3.2. Steady State Analysis 11
4. Impulsive Model 12
5. Results and Discussion 18
6. Conclusion 30
Acknowledgments 30
Appendix A. Appendix. A bit details on dual inhibitors of HIV-1 reverse

transcriptase and integrase 31
Appendix B. Appendix. Local stability of the periodic solution 31
References 34

1. Introduction

Acquired immunodeficiency syndrome (AIDS) is a lethal disease caused by hu-
man immunodeficiency virus (HIV) infection. According to UNAIDS, at the end of
2020, around 37.7 million of people were lived with HIV, among them 1.7 million
of people were newly infected [36]. Although no cure has yet been developed, the
most effective treatment regimen for HIV-1 infection is Highly Active Antiretroviral
Therapy (HAART), a combination of 3 or 4 anti-AIDS drugs [11]. HAART could
successfully keep the viral load in a low level and evidently reduce the mortality of
HIV-1 infected people, but it involves the difficulty of perfect adherence because
of complicated dosing and intolerable toxicities. Recently, dual inhibitors of HIV-1
reverse transcriptase and integrase (Portmanteau Inhibitors) to facilitate patient
compliance have become a promising scientific endeavour [8], [15].

The HIV-1 RT/IN dual inhibitors each of which is a single chemical entity ca-
pable of inhibiting both the enzymes reverse transcriptase (RT) and integrase (IN)
is less likely to develop drug resistance from the virus because of its multi-faceted
approach and cost effectiveness. Reverse Transcriptase Inhibitors fall into two cat-
egories: Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and Non-Nucleoside
Reverse Transcriptase Inhibitors (NNRTIs). NRTIs as competitive inhibitors act
as chain terminators, whereas NNRTIs allosterically inhibit DNA polymerisation.
NRTIs not only interfere with the replication of viral DNA and RNA, but also in-
fluence normal cell DNA replication due to its poor selectivity [12]. NNRTIs target
the allosteric site of the viral Reverse Transcriptase (RT), change the conformation
of the enzyme, interfere the binding between the enzyme bonds and substrate and
inhibit in a non-competitive way [23], [25], [31]. Recently approved Integrase In-
hibitors (raltegravir and elvitegravir) bind the active site of HIV-1 integrase in a
pre-integration complex and block the viral DNA integration into host cell chromo-
somes [3], [30]. In this paper, we have used dual inhibitor of HIV-1 RT/IN taking
bisheteroarylpiperazine compounds (Ex: Delavirdine, Atevirdine) as NNRTI and
β-diketo acids (DKAs) group as integrase inhibitor. For better understanding the
mechanisms of inhibition, it is important to have a clear view about the drug tar-
gets reverse transcriptase (RT) and integrase (IN) and the roles they play in the
viral life cycle.
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Viral infections are initiated by the interactions of the envelope glycoprotein
with the CD4 receptor on the surface of immune cells and a co-receptor either
CCR5 or CXCR4 that leads to a fusion of the membranes of the host cell and the
virion [11], [16], [24]. This fusion introduces the viral core containing two copies
of single-stranded viral RNA genome, about fifty copies of reverse Transcriptase
(RT), integrase and other viral entities into the cytoplasm of the host cell [11], [16].
RT copies the single-stranded viral RNA genome into double-stranded DNA. This
double-stranded DNA is carried into the nucleus of the infected cell and integrated
to the host cell chromosome by another viral enzyme, integrase (IN) [16], [24]. RT
has two catalytic domains: a DNA polymerase domain that can copy either an
RNA or a DNA template and RNase H domain that cleaves RNA from an RNA-
DNA hybrid [2], [16], [24]. Reverse transcription by the enzyme RT needs both a
primer and a template as well as deoxyribonucleotide triphosphates (dNTPs). The
viral RNA genome serves as the template and the primer for synthesis of the first
DNA strand (minus strand) is a host tRNA [16], [24]. The RNA template forms a
complex with the tRNA primer and the complex binds to the polymerase domain
of the enzyme, followed by the addition of dNTPs. The dNTPs bind separately
to another binding site of the polymerase domain and then catalytically added
to the primer sequence [23]. Hence, RT starts to copy the 5’ end of the viral
RNA genome and generates an RNA-DNA hybrid [24]. As soon as the hybrid is
made, RNase H domain degrades the 5’ end of the RNA strand, making the newly
synthesized minus-strand DNA single-stranded [16]. Now, RT starts to generate
the second (plus) strand DNA by making a copy of the newly synthesized minus-
strand DNA along with the first 18 nucleotides from the tRNA primer [16], [24].
As soon as tRNA has been copied into the DNA, RNase H domain of RT cleaves
the tRNA primer and hence, finally double-stranded DNA is formed into the host
cell cytoplasm [16], [18], [24]. Now this double-stranded DNA acts as a substrate
for HIV-1 Integrase (IN). The integration process consists of two catalytic steps:
3’ processing (3’-P) and strand transfer (ST). The processing reaction first takes
place in the cytoplasm of infected cell. The enzyme removes two nucleotides from
each 3’ end of the viral DNA and forms IN-HIV DNA complex (pre integration
complex) [13]. The pre integration complex is then transported into the nucleus of
the host cell. Furthermore, the enzyme catalyses the insertion of the two processed
3’ ends of viral DNA into opposite strands of the host DNA 5’ phosphate ends
by the reaction named as strand transfer and finally proviral DNA is formed [10].
In the final stage of viral life cycle, with the help of Protease enzyme, the viral
assembly process is complete.

A handful of analytical works based on constructing dual inhibitors of HIV-
1 RT/IN in the treatment of Acquired immunodeficiency syndrome (AIDS) have
been performed and the efficacy of these HIV-1 RT/IN dual inhibitors in combating
the HIV-1 infection have also been described theoretically [8], [15]. In 2007, Wang
et al [33] designed dual inhibitors of HIV-1 RT and IN by merging a NNRTI such
as 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT) and β-diketo acid
derivatives (DKAs) as Integrase Inhibitors and showed that the merged compounds
inhibited both the enzymes RT and IN at very low concentrations (IC50RT =
0.0092 − 0.23µM , IC50IN = 1.8 − 7.7µM). Next, in 2008, Wang and Vince [35]
reported a new series of dual inhibitors of HIV-1 RT and IN by incorporating a
diketo acid (DKA) fragment into the NNRTI delavirdine (for more details about
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these dual inhibitors, see Appendix A). With the aim to enhance the anti-HIV
efficacy, in 2015, He and Chen group [19] hybridized the NNRTI etravirine and
integrase inhibitor GS-9137 to synthesize a new series of dual inhibitors of HIV-1
RT/IN. Despite having an ample number of theoretical works related to anti-HIV
activities of these dual inhibitors, a mathematical model based analysis using HIV-1
RT/IN dual inhibitors is yet to be explored.

In the present paper, we consider a mathematical model on HIV-1 RT and
IN catalysed reaction for HIV-1 replication with the understanding of Michaelis-
Menten enzyme kinetic reaction. In the formulated model, we incorporate dual in-
hibitor of HIV-1 RT/IN which simultaneously works as a NNRTI and an integrase
inhibitor. In order to determine an effective dosing regimen for applying the dual
inhibitor of HIV-1 RT/IN, we use impulsive differential equations (IDEs) [17], [14]
based on the steady-state Briggs-Haldane [5], [27] approximation for an enzyme
kinetic reaction. Furthermore, by using Lambert W function [4], [29] we have ob-
tained the analytical periodic solution for multiple dose administration and also
established the expressions for maximum and minimum values of the periodic solu-
tion. Finally, we solve the model numerically and discuss the results from biological
aspect. We hope these results may help the scientists to explore new treatment
strategy in the fight against HIV-1 infection.
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Figure 1. The schematic diagram of the enzymatic reactions.

2. Preliminaries

Let E1 denote the concentration of HIV-1 Reverse Transcriptase (RT), S1 denote
the concentration of viral single-stranded RNA template-primer complex and S2
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denote the concentration of deoxyribonucleotide triphosphate (dNTP). During Re-
verse transcription, the polymerase domain of Reverse Transcriptase (RT), i.e., EA1

starts to copy the viral RNA genome generating RT- RNA template-primer complex
(EA1S1) and little portion of the complex reverts. For this reaction, the forward
and backward rate constants are k1 and k−1 respectively. The RT-RNA template-
primer complex binds with dNTP (S2) to yield RT-RNA template-primer-dNTP
(EA1S1S2) complex which finally formulates a new RT-RNA template - primer
complex (EA1S1(n+1)). As DNA synthesis proceeds, the RNase H domain of Re-
verse Transcriptase (RT), i.e., EB1 binds with the complex EA1S1(n+1) to produce
linear single-stranded viral DNA (P ) with k4

′ rate constant. And from this viral
single-stranded DNA (P ′), viral double-stranded DNA (P ) is formed and the free
RT (E1) along with the primer gets released. The rate constant for this reaction is
k5

′. Now the enzyme HIV-1 Integrase (E2) combines with the newly formed double-
stranded DNA (P) to yield Integrase-HIV DNA complex (E2P ). The Integrase-HIV
DNA complex (E2P ) binds to the host DNA (S3) inside the nucleus of the host cell
and forms Integrase-HIV DNA-host DNA complex (E2PS3) that finally produces
integrated proviral DNA (P1) and releases free enzyme (E2). The forward and
backward rate constants for the integration process are k5, k6, k7, k−5, k−6 respec-
tively. The above facts are represented by the schematic diagram (1).
Since we mainly focus on polymerase chain reaction and integration process, we
ignore the portion of RNase H mechanism from our model to reduce complexity
during mathematical analysis. Therefore the revised schematic diagram (2) is pre-
sented below.
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Figure 2. The revised schematic diagram of the enzymatic reactions.

Following the Law of Mass Action, the set of non-linear differential equations de-
scribing the above enzymatic reactions is as follows:



6 S. MONDAL, J.F. PETERS, P. GHOSH, AND A.K. SARKAR

d[E1]

dt
= −k1[E1][S1] + k−1[E1S1] + k4[E1S1(n+1)],

d[S1]

dt
= λ1 − k1[E1][S1] + k−1[E1S1]− µ1[S1],

d[S2]

dt
= λ2 − k2[E1S1][S2] + k−2[E1S1S2]− µ2[S2],

d[E1S1]

dt
= k1[E1][S1]− k−1[E1S1]− k2[E1S1][S2] + k−2[E1S1S2],

d[E1S1S2]

dt
= k2[E1S1][S2]− k−2[E1S1S2]− k3[E1S1S2],

d[E1S1(n+1)]

dt
= k3[E1S1S2]− k4[E1S1(n+1)],

d[P ]

dt
= k4[E1S1(n+1)]− k5[P ][E2] + k−5[E2P ]− µ3P,

d[E2]

dt
= −k5[E2][P ] + k−5[E2P ] + k7[E2PS3],

d[E2P ]

dt
= k5[E2][P ]− k−5[E2P ]− k6[E2P ][S3] + k−6[E2PS3],

d[S3]

dt
= λ3 − k6[E2P ][S3] + k−6[E2PS3]− µ4[S3],

d[E2PS3]

dt
= k6[E2P ][S3]− k−6[E2PS3]− k7[E2PS3],

d[P1]

dt
= k7[E2PS3]− µ5[P1].(1)

where, λi is the external source rate of Si, i = {1, 2, 3} and µi is the natural decay
rate of S1, S2, P, S3 and P1 respectively.

In order to simplify our model system, we use the steady-state Briggs-Haldane
approximation [5], [27], i.e., shortly after initiation of the reaction, enzyme-substrate
complex is formed at the same rate as it disappearances. Under this assumption,
we get the following relations from system (1):

[E1S1] =
KMS2

[E1][S1]

KS1KMS2
+KMS1

[S2]
,

[E1S1S2] =
[E1][S1][S2]

KS1
KMS2

+KMS1
[S2]

,

[E1S1(n+1)
] =

k3[E1][S1][S2]

k4(KS1
KMS2

+KMS1
[S2])

,

[E2P ] =
KMS3

[E2][P ]

KPKMS3
+KMP

[S3]
,

[E2PS3] =
[E2][P ][S3]

KPKMS3
+KMP

[S3]
.(2)

Substituting the expressions for [E1S1], [E1S1S2], [E1S1(n+1)
], [E2P ], [E2PS3] into

(1) and using the relations [E1]10 = [E1]+[E1S1]+[E1S1S2]+[E1S1(n+1)
], [E2]20 =
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[E2] + [E2P ] + [E2PS3], we obtain the following five dimensional compartmental
model:

d[S1]

dt
= λ1 −

k3[E]10
f([S1], [S2])

[S1][S2]− µ1[S1],

d[S2]

dt
= λ2 −

k3[E]10
f([S1], [S2])

[S1][S2]− µ2[S2],

d[P ]

dt
=

k3[E]10
f([S1], [S2])

[S1][S2]−
k7[E]20

g([P ], [S3])
[P ][S3]− µ3[P ],

d[S3]

dt
= λ3 −

k7[E]20
g([P ], [S3])

[P ][S3]− µ4[S3],

d[P1]

dt
=

k7[E]20
g([P ], [S3])

[P ][S3]− µ5[P1].(3)

Where, f([S1], [S2]) = KS1KMS2
+KMS1

[S2] +KMS2
[S1] +KP

′[S1][S2] + [S1][S2],
g([P ], [S3]) = KPKMS3

+KMP
[S3] +KMS3

[P ] + [P ][S3],
KS1

= k−1

k1
, KMS1

= k3

k1
, KMS2

= k−2+k3

k2
, KP

′ = k3

k4
, KP = k−5

k5
, KMP

= k7

k5
,

KMS3
= k−6+k7

k6
and [E]i0 denotes the total concentration of the ith enzyme, i =

{1, 2}. In this article, we have introduced the dual inhibitor of HIV-1 RT/IN (I) into
the system. Here the drug (I) works as non-competitive and cooperatively binding
inhibitor to bind E1 and hence inactivates it by forming enzyme-inhibitor complex
(E1I). The forward and backward rate constants of this reaction are ki1 and k−i1

respectively. The E1I complex could bind the substrate S1 to yield a ternary
complex E1S1I and the reaction dissociation constant between the complex E1I
and the substrate S1 is KS1

′(= k−1
′/k1

′). Alternatively, the inhibitor I can bind to
the preformed E1S1 complex and thus E1S1I complex can also be generated with
the rate constants ki1

′ and k−i1
′ respectively. In a similar manner, the E1S1S2I

complex can be formed by binding of the E1S1I complex to the substrate S2 or
by binding of inhibitor I to the preordained E1S1S2 complex, in either way. The
forward and backward rate constants for these reactions are k2

′, k−2
′ or ki1

′′ and
k−i1

′′ respectively. The complex E1S1S2I then can go on to yield the complex
E1S1(n+1)

at a reduced rate compared to the uninhibited reaction. Besides acting
as a non-competitive inhibitor toward E1, the drug I simultaneously inhibits the
enzyme (E2) in an uncompetitive way by producing Integrase-HIV DNA-Inhibitor
complex (E2PI) and restrains the integration process. The forward and backward
rate constants for this inhibition process are ki2 and k−i2 respectively. The entire
system can be represented by the schematic diagram (3).
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Figure 3. The schematic diagram of the enzymatic reactions.

Let, [Si] = Si, i = {1, 2, 3}, [P ] = P, [I] = I and [E]j0 = Ej0, j = {1, 2}. Using the
steady state Briggs-Haldane kinetics, the model can be described as:

dS1

dt
= λ1 −

k3E10

f1(S1, S2, I)
S1S2 − µ1S1,

dS2

dt
= λ2 −

k3E10

f1(S1, S2, I)
S1S2 − µ2S2,

dP

dt
=

k3E10

f1(S1, S2, I)
S1S2 −

k7E20

g1(P, S3, I)
PS3 − µ3P,

dS3

dt
= λ3 −

k7E20

g1(P, S3, I)
PS3 − µ4S3,

dP1

dt
=

k7E20

g1(P, S3, I)
PS3 − µ5P1,

dI

dt
= Ic − k3E10[

1

h1(I)
+

1

h2(I)
+

1

h3(I)
]I − k7E20

h4(I)
I − µ6I,(4)

with the initial concentrations S1(0) = S10, S2(0) = S20, S3(0) = S30, P (0) =
0, P1(0) = 0, and I(0) = I0. Here, f1(S1, S2, I) = (KS1

KMS2
+ KMS1

S2)h1(I) +

KMS2
S1h2(I) + S1S2h3(I) +KP

′S1S2; g1(P, S3, I) = KPKMS3
+KMP

S3 + PS3 +

PKMS3
h4(I); h1(I) = (1 + In

Ki1
n ), h2(I) = (1 + In

(Ki1
′)n ), h3(I) = (1 + In

(Ki1
′′)n ),

h4(I) = (1 + I
Ki2

); n = Hill coefficient of inhibitor binding and the equilibrium
dissociation constants Ki1, Ki1

′, Ki1
′′, Ki2 are given by the following:

Ki1 =
k−i1

ki1
,Ki1

′ =
k−i1

′

ki1
′ ,Ki1

′′ =
k−i1

′′

ki1
′′ ,Ki2 =

k−i2

ki2
.

3. Model Property

In this section, we have studied the non-negativity and boundedness of the reactants
and stability of the interior equilibrium of system (4).
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3.1. Non-negativity and Boundedness.

Theorem 1. Each solution of the system (4) with initial conditions, remains non-
negative for all t > 0 and uniformly bounded in the region Γ, where,
Γ = {(S1, S2, P, S3, P1, I) ∈ R6

+ | 0 < S1(t) ≤ λ1

µ1
, 0 < S2(t) ≤ λ2

µ2
, 0 ≤ P (t) ≤

M1

µ3
, 0 ≤ P1(t) ≤ M2

µ5
, 0 < I(t) ≤ Ic

µ6
}.

Proof. First, we show that S1(t) is positive for all t > 0. To see this, assume that
t0 be the first time when S1(t0) = 0. Now initially we have S1(t) > 0 when t = 0.
Therefore, S1(t) > 0 for all t ∈ [0, t0). Substituting t = t0 in the first equation of
system (4), we get,

dS1

dt
= λ1 −

k3E10S1(t0)S2(t0)

f1(S1(t0), S2(t0), I(t0)
− µ1S1(t0)

= λ1

> 0.(5)
This means S1(t) is an increasing function at t = t0. So, there exists an arbi-

trarily small ϵ > 0 such that for all t ∈ (t0− ϵ, t0) ⊂ [0, t0), we have S1(t) < 0. This
is a contradiction to the fact that S1(t) > 0,∀t ∈ [0, t0). Hence, S1(t) > 0,∀t > 0.

Similarly, we can show that the components (S2(t), S3(t), I(t) and P (t)) of our
formulated model are positive for all t > 0. Again from the fifth equation of (4),
we get

dP1

dt
=

k7E20

g1(P, S3, I)
PS3 − µ5P1

> −µ5P1.(6)
But the initial value of P1 is zero. So, we can write,

dP1

dt
> 0,(7)

implies,
P1 > 0.(8)

Hence, we have the non-negativity of the solutions of the system (4) with the initial
conditions.

Now we show that S1(t), S2(t), P (t), S3(t), P1(t) and I(t) are all bounded in their
domains of definition. Taking first equation of (4), we get

dS1

dt
= λ1 −

k3E10

f1(S1, S2, I)
S1S2 − µ1S1,

⇒ dS1

dt
6 λ1 − µ1S1(9)

After integration, we have

S1(t) 6 λ1

µ1
(1− e−µ1t) + S10e

−µ1t(10)

Thus, for sufficiently large t, we get the maximum value of template-primer complex
presence in the case of HIV-1 infection as

lim sup
t→+∞

S1(t) 6 λ1

µ1
(11)
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Similarly, from second, fourth and sixth equations of (4), we can determine

lim sup
t→+∞

S2(t) 6 λ2

µ2
,(12)

lim sup
t→+∞

S3(t) ≤ λ3

µ4
(13)

and

lim sup
t→+∞

I(t) ≤ Ic
µ6

(14)

Now considering the third equation of (4) we get the following inequality
dP

dt
≤ k3E10S1S2

f1(S1, S2, I)
− µ3P(15)

Using the results obtained in (11), (12) and (14) one can get from the inequality
(15),

dP

dt
≤ M1 − µ3P(16)

Solving the above inequality (16) for sufficiently large t, we get the following result,

lim sup
t→+∞

P (t) ≤ M1

µ3
(17)

where,

M1 =
k3E10λ1λ2Ki1

n(Ki1
′)
n
(Ki1

′′)
n
µn
6

µ1β1α1 +KMS2
λ1µ2α2 + λ1λ2α3 +KP

′λ1λ2µn
6Ki1

n(Ki1
′)
n
(Ki1

′′)
n ,

(18)

with β1 = (µ2KS1
KMS2

+ KMS1
λ2),α1 = (Inc + Ki1

nµn
6 )(Ki1

′
)
n
(Ki1

′′)
n, α2 =

(Inc + (Ki1
′)
n
µn
6 )Ki1

n(Ki1
′′)

n, α3 = (Inc + (Ki1
′′)

n
µn
6 )Ki1

n(Ki1
′)
n.

From the fifth equation of system (4) and using the maximum values of P and
S3, the following inequality can be derived

dP1

dt
≤ M2 − µ5P1.(19)

In order to find the maximum value of Proviral DNA in HIV-1 infected patient, we
solve the above inequality (19) for sufficiently large t and get,

lim sup
t→+∞

P1(t) ≤ M2

µ5
(20)

Where,

M2 =
k7E20M1λ3µ6Ki2

µ3µ4µ6KPKMS3
+KMP

λ3µ3µ6 +M1λ3µ6 +M1KMS3
µ4(Ic +Ki2)

.

(21)

Therefore all solutions of the system (4) are bounded. �
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3.2. Steady State Analysis. The system (4) has at least one interior equilibrium,
E∗(S1

∗, S2
∗, P ∗, S3

∗, P1
∗, I∗), where S1

∗, S2
∗, P ∗, S3

∗, P1
∗ and I∗ are the positive

roots of the following set of equations:

λ1 −
k3E10

f1(S1
∗, S2

∗, I∗)
S1

∗S2
∗ − µ1S1

∗ = 0,

λ2 −
k3E10

f1(S1
∗, S2

∗, I∗)
S1

∗S2
∗ − µ2S2

∗ = 0,

k3E10

f1(S1
∗, S2

∗, I∗)
S1

∗S2
∗ − k7E20

g1(P ∗, S3
∗, I∗)

P ∗S3
∗ − µ3P

∗ = 0,

λ3 −
k7E20

g1(P ∗, S3
∗, I∗)

P ∗S3
∗ − µ4S3

∗ = 0,

k7E20

g1(P ∗, S3
∗, I∗)

P ∗S3
∗ − µ5P1

∗ = 0,

Ic − k3E10[
1

h1(I
∗)

+
1

h2(I
∗)

+
1

h3(I∗)
]I∗ − k7E20

h4(I∗)
I∗ − µ6I

∗ = 0.(22)

The Jacobin matrix J∗ at the interior equilibrium point E∗ is

J∗ =


−a11 − µ1 −a12 0 0 0 a16

−a11 −a12 − µ2 0 0 0 a16
a11 a12 −a33 − µ3 −a34 0 −a16 + a36
0 0 −a33 −a34 − µ4 0 a36
0 0 a33 a34 −µ5 −a36
0 0 0 0 0 −a66 − µ6


where,

a11 =
k3E10h1(I

∗)S2
∗(KS1

KMS2
+KMS1

S2
∗)

(f1(S1
∗,S2

∗,I∗))2 , a12 =
k3E10S1

∗KMS2
(KS1

h1(I
∗)+S1

∗h2(I
∗))

(f1(S1
∗,S2

∗,I∗))2 ,

a16 =
k3E10S1

∗S2
∗{(KS1

KMS2
+KMS1

S2
∗)(Ki1

′)n(Ki1
′′)n+KMS2

S1
∗Ki1

n(Ki1
′′)n+S1

∗S2
∗Ki1

n(Ki1
′)n}nI∗(n−1)

(f1(S1
∗,S2

∗,I∗))2Ki1
n(Ki1

′)n(Ki1
′′)n

,

a33 =
k7E20S3

∗(KPKMS3
+KMP

S3
∗)

(g1(P∗,S3
∗,I∗))2 , a34 =

k7E20P
∗(KPKMS3

+KMS3
P∗h4(I

∗))

(g1(P∗,S3
∗,I∗))2 ,

a36 =
k7E20P

∗2S3
∗KMS3

(g1(P∗,S3
∗,I∗))2Ki2

, a66 = k3E10[
Ki1

n{Ki1
n−(n−1)I∗n}

(Ki1
n+I∗n)2 + (Ki1

′)n{(Ki1
′)n−(n−1)I∗n}

{(Ki1
′)n+I∗n}2 +

(Ki1
′′)n{(Ki1

′′)n−(n−1)I∗n}
{(Ki1

′′)n+I∗n}2 ] + k7E20(Ki2)
2

{Ki2+I∗}2 .

Now the characteristic equation at the interior equilibrium point E∗ is of the fol-
lowing form:

(µ5 + x)(a66 + µ6 + x){x2 +A1x+B1}{x2 +A2x2 +B2} = 0.(23)

where,
A1 = a33 + a34 + µ3 + µ4, B1 = a33µ4 + µ3(a34 + µ4), A2 = a11 + a12 + µ1 + µ2,
B2 = a11µ2 + µ1(a12 + µ2).
All the six eigenvalues are always negative. Therefore the interior equilibrium E∗

is locally asymptotically stable.
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4. Impulsive Model

The one-dimensional impulsive differential equation takes the form:
dI

dt
= −k3E10[

1

h1(I)
+

1

h2(I)
+

1

h3(I)
]I − k7E20

h4(I)
I − µ6I, for t 6= tk,

I(t+k )− I(t−k ) = Ic for t = tk.(24)
Where I is the concentration of the dual inhibitor of HIV-1 RT/IN with initial
condition I0 > 0. Here, I+ and I− are the concentrations of the inhibitor after and
before impulse, respectively.
We calculate the rate equation of dual inhibitor of HIV-1 RT/IN in the following
manner so that we can get some fruitful result from drug dynamics. The calculations
are as follows:

dI

dt
= −k3E10[

1

h1(I)
+

1

h2(I)
+

1

h3(I)
]I − k7E20

h4(I)
I − µ6I.(25)

Where, h1(I) = (1 + In

Ki1
n ), h2(I) = (1 + In

(Ki1
′)n ), h3(I) = (1 + In

(Ki1
′′)n ), h4(I) =

(1 + I
Ki2

); n = Hill coefficient of inhibitor binding.

We see from above equation (25) that the dual inhibitor (I) of HIV-1 RT/IN
exhibits simultaneous linear and nonlinear Michaelis-Menten elimination kinetics
but the first-order elimination pathway is not that much important to determine
the drug dose like the nonlinear Michaelis-Menten elimination pathway. So we
can neglect the linear elimination part to avoid complexity in further calculations.
Therefore, the rate equation of the inhibitor (I) takes the form:

dI

dt
= −k3E10[

1

h1(I)
+

1

h2(I)
+

1

h3(I)
]I − k7E20

h4(I)
I(26)

Since the dual inhibitor (I) of HIV-1 RT/IN manifest two different parallel inhibi-
tion mechanisms, we divide the inhibitor (I) into two portions I1 and I2 in a way
such that

dI

dt
=

dI1
dt

+
dI2
dt

(27)

where I1 = αI and I2 = (1 − α)I, α ∈ (0, 1). Therefore, integrating the above
Equation (27) and using the initial value conditions for I(t), I1(t) and I2(t) we get

I(t) = I1(t) + I2(t)(28)
Here I1 working as a noncompetitive binding inhibitor shows intermolecular coop-
erativity to inhibit the enzyme RT (E1) whereas I2 uncompetitively inhibits the
enzyme IN (E2).
Hence, the rate equations for I1(t) and I2(t) are as follows:

dI1
dt

= −k3E10[
1

h1(I1)
+

1

h2(I1)
+

1

h3(I1)
]I1(29)

and
dI2
dt

= − k7E20

h4(I2)
I2.(30)

Here, h1(I1) = (1 +
In
1

Ki1
n ), h2(I1) = (1 + I1

n

(Ki1
′)n ), h3(I1) = (1 + I1

n

(Ki1
′′)n ), h4(I2) =

(1 + I2
Ki2

); Ki1
′ = β1Ki1 and Ki1

′′ = β2Ki1. Ki1
′ ≷ Ki1 as well as Ki1

′′ ≷ Ki1
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according to β1 ≷ 1 and β2 ≷ 1 respectively. In our case, we choose β1, β2 such
that 1 < β2 < β1.
Using the above mentioned relations between Ki1, Ki1

′ and Ki1
′′, we can derive

h1(I1) = 1 +
In1

Ki1
n

> 1 +
I1

n

(Ki1
′)
n

= h2(I1)(31)

and

h3(I1) = 1 +
I1

n

(Ki1
′′)

n

> 1 +
I1

n

(Ki1
′)
n

= h2(I1).(32)

Now replacing h1(I1) and h3(I1) by h2(I1) in equation (29), we get the following
inequality

dI1
dt

>
−k3E10

h2(I1)
I1

i.e.,

dI1
dt

>
−k3E10(Ki1

′)
n

(Ki1
′)
n
+ I1

n I1.(33)

We have derived the inequality (33) from the above calculation to determine the
minimum permitted dose for the maximum toxicity, as the inhibitor (I) itself can
be toxic for human body when presents in excess amount. So we have considered
the equality with Equation (33) and formulated the impulsive differential equations
for I1 and I2.
Hence, the impulsive differential equations for I1 and I2 take the form

dI1
dt

=
−k3E10(Ki1

′)
n

(Ki1
′)
n
+ I1

n I1, for t 6= tk,

I1(t
+
k ) −I1(t

−
k ) = αIc for t = tk(34)

and
dI2
dt

=
−k7E20Ki2

Ki2 + I2
I2, for t 6= tk,

I2(t
+
k ) − I2(t

−
k ) = (1− α)Ic for t = tk,(35)

where Ic is the fixed dose of dual inhibitor of HIV-1 RT/IN given on a fixed time
interval τ . Here we consider the single impulse cycle tk ≤ t ≤ tk+1 such that
tk+1 − tk = τ and k = 0, 1, 2, . . .. The general integrated form of the differential
equations (34) and (35) are given by

1

k3E10

[
ln

(
I1(t

+
k )

I1(t)

)
+

1

n(Ki1
′)
n

(
I1(t

+
k )

n − I1(t)
n
)]

= t− tk(36)
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and
1

k7E20

[
ln

(
I2(t

+
k )

I2(t)

)
+

1

Ki2
(I2(t

+
k )− I2(t))

]
= t− tk.(37)

However, to derive the exact closed form solutions for the differential Equations
(34)-(35) [26], [29], we use the properties of the Lambert W function [9], [4], defined
to be the multivalued inverse of the function x 7→ xex satisfying

LambertW (x)exp(LambertW (x)) = x.(38)
Now Equations (36), (37) can be rewritten as:

ln

(
I1(t)

n

I1(t
+
k )

n

)
+

I1(t)
n

(Ki1
′)
n =

I1(t
+
k )

n − n(Ki1
′)
n
k3E10(t− tk)

(Ki1
′)
n(39)

and

ln

(
I2(t)

I2(t
+
k )

)
+

I2(t)

Ki2
=

I2(t
+
k )−Ki2k7E20(t− tk)

Ki2
, respectively.(40)

Taking exponents of both sides on the above Equation (39) implies
I1(t)

n

(Ki1
′)
n exp

(
I1(t)

n

(Ki1
′)
n

)
=

I1(t
+
k )

n

(Ki1
′)
n exp

(
I1(t

+
k )

n − n(Ki1
′)
n
k3E10(t− tk)

(Ki1
′)
n

)
.

(41)
It follows from the definition of Lambert W function that we have the following
explicit closed-form solution for model (34)

I1(t)
n = (Ki1

′)
n
LambertW

(
I1(t

+
k )

n

(Ki1
′)
n exp

(
I1(t

+
k )

n − n(Ki1
′)
n
k3E10(t− tk)

(Ki1
′)
n

))
.

(42)
Using similar approach, we derive the analytical solution for model (35) from Equa-
tion (40) as

I2(t) = Ki2LambertW

(
I2(t

+
k )

Ki2
exp

(
I2(t

+
k )−Ki2k7E20(t− tk)

Ki2

))
.(43)

Actually, here I1(t)
n ≡ I1(t) because I1(t)

n represents the total amount of the dual
inhibitor (I) of HIV-1 RT/IN in the body at time t. Hence, denoting I1(t)

n by
I1(t) in Equation (42) gives

I1(t) = (Ki1
′)
n
LambertW

(
I1(t

+
k )

(Ki1
′)
n exp

(
I1(t

+
k )− n(Ki1

′)
n
k3E10(t− tk)

(Ki1
′)
n

))
.

(44)
Therefore, the solution of model (24) at any interval (tk, tk+1] is

I(t) = I1(t) + I2(t)

⇒ I(t) = (Ki1
′)
n
LambertW

(
I1(t

+
k )

(Ki1
′)
n exp

(
I1(t

+
k )− n(Ki1

′)
n
k3E10(t− tk)

(Ki1
′)
n

))
+ Ki2LambertW

(
I2(t

+
k )

Ki2
exp

(
I2(t

+
k )−Ki2k7E20(t− tk)

Ki2

))
.(45)

Now Equation (45) implies that
I(t−k+1) = I1(t

−
k+1) + I2(t

−
k+1)
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Therefore,

I(t+k+1) = I(t−k+1) + Ic

= I1(t
−
k+1) + I2(t

−
k+1) + αIc + (1− α)Ic

= (I1(t
−
k+1) + αIc) + (I2(t

−
k+1) + (1− α)Ic)

⇒ I(t+k+1) = I1(t
+
k+1) + I2(t

+
k+1).(46)

We obtain the expressions for I1(t
−
k+1), I2(t

−
k+1) from Equations (44) and (43) re-

spectively. Equation (44) implies that

I1(t
−
k+1) = (Ki1

′)
n
LambertW

(
I1(t

+
k )

(Ki1
′)
n exp

(
I1(t

+
k )− n(Ki1

′)
n
k3E10(tk+1 − tk)

(Ki1
′)
n

))
(47)

This implies

I1(t
+
k+1) = I1(t

−
k+1) + αIc

⇒ I1(t
+
k+1) = (Ki1

′)
n
LambertW

(
I1(t

+
k )

(Ki1
′)
n exp

(
I1(t

+
k )− n(Ki1

′)
n
k3E10(tk+1 − tk)

(Ki1
′)
n

))
+ αIc.

(48)

Similarly, considering equation (43) we can derive

I2(t
+
k+1) = Ki2LambertW

(
I2(t

+
k )

Ki2
exp

(
I2(t

+
k )−Ki2k7E20(tk+1 − tk)

Ki2

))
+ (1− α)Ic.

(49)

Now, equation (46) implies that there is positive periodic solution of model (24) if
model (46) has atleast one positive steady-state. To find the steady-state concen-
tration at any time t, we denote Ik = I(t+k+1), I1k = I1(t

+
k+1), I2k = I2(t

+
k+1). Then

Equations (46) reduces to

Ik = I1k + I2k(50)

where the expressions for I1k and I2k are represented by the following equations,
substituting tk+1 − tk = τ

I1k = (Ki1
′)
n
LambertW

(
I1k−1

(Ki1
′)
n exp

(
I1k−1

− n(Ki1
′)
n
k3E10τ

(Ki1
′)
n

))
+ αIc

(51)

and

I2k = Ki2LambertW

(
I2k−1

Ki2
exp

(
I2k−1

−Ki2k7E20τ

Ki2

))
+ (1− α)Ic.

(52)

Let k tend to infinity, the steady-state I∗ satisfies the the following equation

I∗ = I∗1 + I∗2 .(53)
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I∗1 and I∗2 are the respective steady-states of Equations (51)- (52) and satisfies

I∗1 = (Ki1
′)
n
LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

))
+ αIc,

(54)

I∗2 = Ki2LambertW

(
I∗2
Ki2

exp

(
I∗2 −Ki2k7E20τ

Ki2

))
+ (1− α)Ic.

(55)

Now Equation (54) implies that

I∗1 − αIc

(Ki1
′)
n = LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

))
.

(56)

It follows from the definition of Lambert W function that
I∗1 − αIc

(Ki1
′)
n exp

(
I∗1 − αIc

(Ki1
′)
n

)
=

I∗1
(Ki1

′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

)
(57)

which implies that there is a unique positive steady-state

I∗1 =
αIc

1− exp
(

αIc−n(Ki1
′)nk3E10τ

(Ki1
′)n

)(58)

provided

exp

(
αIc − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

)
< 1.

Hence, we get the periodic solution of model (34) as

I1(t) = (Ki1
′)
n
LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10(t− tk)

(Ki1
′)
n

))
.

(59)

Similarly, we can show that the difference Equation (52) has a unique positive
steady-state I∗2 and satisfies

I∗2 =
(1− α)Ic

1− exp
(

(1−α)Ic−Ki2k7E20τ
Ki2

)(60)

provided

exp

(
(1− α)Ic −Ki2k7E20τ

Ki2

)
< 1

and thus the periodic solution of model (35) is

I2(t) = Ki2LambertW

(
I∗2
Ki2

exp

(
I∗2 −Ki2k7E20(t− tk)

Ki2

))
.(61)
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Therefore, we can say that the difference Equation (50) has a unique positive steady-
state I∗ and verifies

I∗ =
αIc

1− exp
(

αIc−n(Ki1
′)nk3E10τ

(Ki1
′)n

) +
(1− α)Ic

1− exp
(

(1−α)Ic−Ki2k7E20τ
Ki2

)
(62)

if the following inequalities hold true:
αIc
τ

< n(Ki1
′)
n
k3E10(63)

and
(1− α)Ic

τ
< Ki2k7E20.(64)

Adding the above two inequalities (63) and (64), we obtain
Ic
τ

< n(Ki1
′)
n
k3E10 +Ki2k7E20(65)

or

τ >
Ic

n(Ki1
′)
n
k3E10 +Ki2k7E20

= τmin.(66)

Thus the periodic solution of model (24) is given by

I(t) = (Ki1
′)
n
LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10(t− tk)

(Ki1
′)
n

))
+ Ki2LambertW

(
I∗2
Ki2

exp

(
I∗2 −Ki2k7E20(t− tk)

Ki2

))
(67)

where, the values of I∗1 , I∗2 are expressed by Equations (58), (60) respectively.
We see from the existence condition (65) that the model (24) has a unique periodic
solution under the condition Ic

τ < (n(Ki1
′)
n
k3E10+Ki2k7E20). Moreover, we have

shown the local stability of the periodic solution (67) (Appendix B). Obviously,
Equation (62) implies that I∗ > Ic. Hence, in order to design a periodic dosing
regimen, one large initial dose I∗ should be administered, following with a small
dose Ic.
Let us denote the steady-state minimum and maximum concentrations as Issmin and
Issmax, respectively. At the steady-state, these concentrations can be given by

Issmin = (Ki1
′)
n
LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

))
+ Ki2LambertW

(
I∗2
Ki2

exp

(
I∗2 −Ki2k7E20τ

Ki2

))
(68)

and

Issmax = (Ki1
′)
n
LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

))
+ Ki2LambertW

(
I∗2
Ki2

exp

(
I∗2 −Ki2k7E20τ

Ki2

))
+ Ic

≡ I∗.(69)
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5. Results and Discussion

To illustrate the behaviour of models, (3 and 4), we give numerical simulations
with the set of parameter values in Table (1). Some of these values are estimated
from [2], [8], [15], [21], [7], [1], [22], [20], [32], [37], [28], [6]. We begin by simulating
the system without impulse, then with impulse.

Table 1. List of parameters

Parameter Parameter description Value (Unit)

k3 The rate of the forward reaction
from E1S1S2 to E1S1n+1

(0.8− 2.7) sec−1

k7 The rate of the forward reaction
from E2PS3 to E2 and P1

(0.7− 4.6) hr−1

KS1
Reaction dissociation constant
between S1 and E1

(0.0001− 2.05) µM

KMS1
Michaelis constant for S1 (1.002− 2.08) µM

KMS2
Michaelis constant for S2 (0.005− 1.8) µM

KMS3
Michaelis constant for S3 (1.0− 3.5) µM

KMP
Michaelis constant for P (0.002− 0.20) µM

KP
′ Ratio of the forward rate con-

stant from E1S1S2 to E1S1n+1

and from E1S1n+1
to E1 + P

(0.1− 0.8) µM

KP Reaction dissociation constant
between P and E2

(0.02− 1.03) µM

Ki1 Reaction dissociation constant
between E1 and I

(1.8− 5.5) µM

Ki1
′ Reaction dissociation constant

between E1S1 and I
(10.0− 15.0) µM

Ki1
′′ Reaction dissociation constant

between E1S1S2 and I
(5.7− 10.0) µM

Ki2 Reaction dissociation constant
between E2P and I

(1.3− 5.8) µM

µ1 Degradation rate of S1 (0.001− 0.28) hr−1

µ2 Degradation rate of S2 (0.02− 0.5) hr−1

µ3 Degradation rate of P (0.0001− 0.4) hr−1

µ4 Degradation rate of S3 (0.001− 0.18) hr−1

µ5 Degradation rate of P1 (0.02− 0.3) hr−1

Figure (4), shows the reaction dynamics of formation of viral double-stranded DNA
and integrated pro-viral DNA in HIV-1 infected patient. When an individual gets
infected, a viral enzyme reverse transcriptase (RT) starts to synthesize double-
stranded DNA (P (t)) from a viral single-stranded RNA genome with the help of
deoxyribonucleotide triphosphates (dNTPs). The viral genome serving as an RNA
template binds into a host tRNA primer and forms a template-primer complex
(S1(t)) that binds to one site on the enzyme. The dNTPs (S2(t)) bind to another
site on the enzyme and are then catalytically added to the primer sequence. The
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Figure 4. The nature of the curves of reactants in absence of
HIV-1 RT/IN dual inhibitor, using S1(0) = 3.5µM , S2(0) = 5µM ,
S3(0) = 5.3µM , E1(0) = 3µM , E2(0) = 1.8µM as initial values.
We have taken the parameter values from Table (1).

template-primer complex (S1(t)) then starts to interact with the dNTPs (S2(t))
and hence the synthesis process that is catalysed by enzyme RT of double-stranded
DNA (P (t)) begins. So, the complex (S1(t)) concentration and the dNTPs (S2(t))
concentration decrease and the concentration of double-stranded DNA (P (t)) in-
creases with time in a particular rate. Further, the double-stranded DNA (P (t))
is carried into the nucleus of the infected cell and it reacts with the host cell chro-
mosome (S3(t)) and these are converted into the final product integrated pro-viral
DNA (P1(t)) through the integration process catalysed by another viral enzyme
integrase (IN). So, the concentration of viral double-stranded DNA (P (t)) and
the host DNA (S3(t)) concentration decrease while the integrated pro-viral DNA
(P1(t)) concentration increases. Here the first product double-stranded DNA (P (t))
which is generated from the template-primer-dNTPs reaction, acts as a substrate
for the integration process. For being the product of one reaction and substrate
of another, the concentration of viral double-stranded DNA (P (t)) first increases
with time and then decreases. Except the concentrations of viral double-stranded
DNA and integrated pro-viral DNA, we see similar nature of the curves of the
components (S1, S2, S3) participating in HIV-1 replication process.
Figure (5), describes the dynamics of formation of viral double-stranded DNA and
integrated pro-viral DNA in HIV-1 infected patient after an immediate introduction
of dual inhibitor of HIV-1 reverse transcriptase (RT) and integrase (IN) into the
system. We have already mentioned that an RNA/DNA template-primer complex
(S1(t)) and the dNTPs (S2(t)) interact with each other and these are converted into
the first product viral double-stranded DNA (P (t)) in host cell cytoplasm through
the process of reverse transcription catalysed by enzyme RT. So, the concentra-
tions of the template-primer complex (S1(t)) and the dNTPs (S2(t)) decrease while
the viral double-stranded DNA (P (t)) concentration increases. Furthermore, the
double-stranded DNA (P (t)) is transported into the nucleus of the infected cell and
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Figure 5. The nature of the curves of reactants in presence of
HIV-1 RT/IN dual inhibitor with the initial conditions S1(0) =
3.5µM , S2(0) = 5µM , S3(0) = 5.3µM , E1(0) = 3µM , E2(0) =
1.8µM , I0 = 10µM . Here the parameter values are taken from
Table (1).

transformed into the final product integrated pro-viral DNA (P1(t)) after making
an integration with the host cell chromosome (S3(t)) by another viral enzyme, in-
tegrase (IN). Therefore the curve of double-stranded DNA (P (t)) concentration
slows down like an uninhibited reaction when the concentration curve of integrated
pro-viral DNA (P1(t)) speeds up with time in a particular rate. Here we introduce
the drug (I(t)) immediately after infection and the drug (I(t)) cooperatively (hill
coefficient > 1) binds to enzyme RT and inactivates it in a non-competitive way,
the curve defining the increasing rate of changes in double-stranded DNA (P (t))
concentration has a sigmoidal shape. Besides, the drug (I(t)) simultaneously works
as an uncompetitive inhibitor towards enzyme IN and since no cooperativity (hill
coefficient = 1) is shown for binding to enzyme IN, the concentration curve of inte-
grated pro-viral DNA (P1(t)) grows up in a hyperbolic nature. Also the curve that
represents the host DNA (S3(t)) concentration decreases in a similar way like the
curves of S1 and S2. Hence, a detailed explanation is not necessary.
In Figure (6) we can see if we introduce dual inhibitor of HIV-1 reverse tran-
scriptase and integrase in the system immediately, the formation of viral double-
stranded DNA (P (t)) as well as integrated pro-viral DNA (P1(t)) production slows
down. Here we compare the reactants concentration in presence of dual inhibitor
of HIV-1 RT/IN and in absence of dual inhibitor of HIV-1 RT/IN. Due to the
non-competitive binding phenomena of the inhibitor (I(t)) towards enzyme RT,
the progress curves of template-primer complex (S1(t)) and the dNTPs (S2(t)) go
down at a reduced rate relative to the uninhibited reaction. A similar thing happens
to the host DNA (S3(t)) concentration curve as the drug simultaneously inhibits
the enzyme IN in an uncompetitive way. The impact of the slower decrease of the
reactants (S1, S2, S3) is reflected on the formation of the other two components
(P, P1) participating in HIV-1 life cycle. We can see that in presence of the dual
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Figure 6. Comparison study between absence of HIV-1 RT/IN
dual inhibitor and presence of HIV-1 RT/IN dual inhibitor for
each reactant with initial conditions same as the above figures.
Here also the parameter values are taken from Table (1).

inhibitor of HIV-1 RT/IN (I(t)), there is a sharp declination in the maximum ve-
locity, i.e., in the peak point of double-stranded DNA (P1(t)) progress curve. After
achieving the maximum velocity, the double-stranded DNA (P (t)) concentration
decreases with time at a lower rate comparing to the unrestrained reaction rate
which is beneficial for an HIV-1 infected patient. Alternatively in presence of the
dual inhibitor of HIV-1 RT/IN, the curve that represents the integrated pro-viral
DNA (P1(t)) concentration becomes lower than in absence of the inhibitor which
is also very much advantageous for the patient. Integrated pro-viral DNA further
takes part in the HIV-1 replication process, so the reduction of integrated pro-viral
DNA concentration creates a favourable condition to suppressing the viral load in
a low level. However, the effect of single dose of dual inhibitor of HIV-1 RT/IN on
HIV-1 replication has been shown in Fig.(6) and we can see the benefits of using
it for an HIV-1 infected individual introducing only once at intermediate stages of
viral life cycle.
From Figure (7) we can get an overview of how fast the substrate template-primer
complex (S1) disappearances in the reaction pathway as well as how fast the sub-
strate viral double-stranded DNA (P ) is turned into the product integrated proviral
DNA (P1). The rate of disappearance of the substrate S1 starts in a hyperbolic
way because the velocity decreases proportionately with the substrate concentra-
tion. However, with further increases in substrate (S1) concentration, the rate of
decrease in the velocity slows down until a plateau is reached as the enzyme re-
verse transcriptase (E1) becomes saturated. The reaction rate then decreases with
increasing substrate (S1) concentration, but most asymptotically approach the sat-
uration rate. It is worth noting that in presence of the dual inhibitor of HIV-1
reverse transcriptase (RT) and integrase (IN), the rate of disappearances of sub-
strate S1 occurs in a slower motion than in absence of the inhibitor (I) because
of non-competitive binding property of the inhibitor (I) towards enzyme RT (E1)
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Figure 7. Comparison study between the plot of initial velocity
as a function of substrate concentration in the presence of HIV-1
RT/IN dual inhibitor and in absence of HIV-1 RT/IN dual in-
hibitor and the parameter values are collected from Table (1).

and as a result, the saturation point C1(10, 0.8879) exists at a considerably upper
position than the saturation point in absence of the dual inhibitor of HIV-1 RT/IN
(I). In Figure (7(b)) we see an exact opposite nature between the positions of the
saturation points from Figure (7(a)). Here as the substrate (P ) concentration in-
creases, so does the rate of reaction upto a certain point; at this point an optimal
velocity (Vmax) is reached. A continued increase in substrate (P ) concentration
produces no significant change in the reaction rate as there are not enough en-
zyme integrase (E2) molecules available to break down the excess substrate (P )
molecules. Since the dual inhibitor of HIV-1 RT/IN (I) simultaneously binds the
enzyme integrase (E2) in an uncompetitive way, the saturation point Y1(1.2, 1.697)
exists at a lower position than the point Y (3, 2.261) in absence of the dual inhibitor
of HIV-1 RT/IN (I). Another noticeable feature of figure (7(b)) is that unlike fig-
ure (7(a)), the rate of reaction does not grow in a hyperbolic manner. Instead, the
initial velocity tracks linearly with substrate (P ) concentration as the enzyme (E2)
concentration is fixed at a higher value than the substrate (P ) concentration and
the concentration of substrate (P ) is then titrated. However, from both the figures
(fig.7(a) & fig.7(b)), we are getting quite feasible and satisfactory results about the
dual inhibitor of HIV-1 reverse transcriptase (RT) and integrase (IN) to control the
HIV-1 infection.
We can notice as displayed in Figure (8) that Issmin and Issmax increase in a non-
linear way with respect to dose. However, for a fixed dose these concentrations are
decreasing with respect to dosing interval τ . Here, we have taken period of dosing τ
as 6h, 8h and observed the nature of the curves of Issmin and Issmax. Now, Eqns. (68,
69) clarify that Issmin or Issmax depends on the steady-state I∗. In combination with
the existence condition (65), Figure (8) also describes that for given dose interval
τ , the small dose Ic results in a small steady state I∗ as well as a small maximum
value of the periodic solution (67). This means that any solution of model (24)
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Figure 8. The relationships among the steady state, dose interval
τ and dose Ic. Here we have taken E1(0) = 3µM , E2(0) = 1.8µM
and the parameter values are collected from Table(1).

approaches the periodic solution (67) at a higher speed in response to a smaller
dose Ic. Figure (8) also confirms that the longer the dose interval is, the larger the
dose can be used.
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Figure 9. Concentration-time curves of the components of model
(4) for the impulsive dosing of dual inhibitor of HIV-1 RT/IN with
the initial conditions S1(0) = 3.5µM , S2(0) = 5µM , S3(0) =
5.3µM , E1(0) = 3µM , E2(0) = 1.8µM , I0 = 10µM , impulse dose
input Ic = 5µM and the time interval of dosing τ = 8h. We have
taken the parameter values from Table (1).
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Figure 10. Concentration-time curves of all the reactants of
model (4) for the impulsive dosing of HIV-1 RT/IN dual inhibitor
with the initial conditions same as Fig. (9) except I0 = 25µM ,
impulse dose input Ic = 20µM and the time interval of dosing
τ = 8h. Here the parameter values are collected from Table (1).
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Figure 11. Curves of the components of model (4) for the im-
pulsive dosing of dual inhibitor of HIV-1 RT/IN using the initial
value I0 = 30µM , impulse dose input Ic = 25µM and the dosing
interval τ = 8h. The other initial and parameter values are fixed
as those in Fig. (9).

Figures (9-13) represent the pattern of the curves of the components (viral single-
stranded RNA (S1), dNTPs (S2), viral double-stranded DNA (P ), host DNA (S3),
integrated proviral DNA (P1), dual inhibitor (I) of HIV-1 reverse transcriptase and
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Figure 12. Nature of the curves of the components of model (4)
for the impulsive dosing of dual inhibitor of HIV-1 RT/IN. Here the
initial and parameter values are as like Fig. (9) except I0 = 35µM ,
impulse dose input Ic = 30µM and the period of dosing τ = 8h.

Figure 13. Curves of the components of model (4) for the impul-
sive dosing of dual inhibitor of HIV-1 RT/IN with the conditions
I0 = 40µM , impulse dose input Ic = 35µM and the time interval
of dosing τ = 8h. The other initial values as well as the parameter
values are same as Fig. (9).

integrase) involved in enzymatic reaction of dual inhibitor (I) of HIV-1 reverse tran-
scriptase (RT) and integrase (IN). We apply the dual inhibitor (I) of HIV-1 RT/IN
in intervals of 8 hour and vary the initial value (I0 = 10µM, 25µM, 30µM, 35µM, 40µM
respectively) of the inhibitor (I) as well as the dose amount Ic (= 5µM, 20µM, 25µM, 30µM, 35µM)
in each respective figure and observe the nature of the curves. Due to the impulsive
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dosing of the dual inhibitor (I) of HIV-1 RT/IN, the fluctuating nature is seen in
the curve of each component in all the figures except Fig. (13). In Figure (13),
the fluctuating nature is negligible for the curves of the components S1(t), S2(t)
and S3(t). We can notice as displayed in each figure from (9-13) that the con-
centration of viral double-stranded DNA (P ) first increases then decreases and the
process further continues whereas the inhibitor concentration (I) first decreases and
then it increases, showing an exact opposite nature as compared to the curve of
viral double-stranded DNA (P ). It is worth noting that in Figure (9) the inhibitor
concentration first reduces to zero but it does not rise up immediately, rather it
becomes steady until the next dose is administered while in figure (10), the concen-
tration of the inhibitor I immediately speeds up after being reduced to zero. The
nature of the curves of other components (S1(t), S2(t), S3(t), P1(t)) in Figure (10)
are quite similar as those of Figure (9) except the fact that the progress curves of
S1(t), S2(t) and S3(t) in Figure (10) slow down at a reduced rate relative to those
curves in Figure (9) whereas the growth curve of the integrated proviral DNA (P1)
in Figure (9) increases rapidly comparing to that curve in Figure (10). From Figure
(11) the dual inhibitor (I) of HIV-1 RT/IN starts to dominate the viral replica-
tion process and as a result we see in Figure (11) that viral single-stranded RNA
(S1) concentration as well as the concentration of host DNA (S3) increase while
the concentration of dNTPs (S2) decreases. In Figures (12-13), a complete dom-
inating property of the inhibitor (I) to controlling the enzymatic reaction is seen
and the reactants (S1, S2, P, S3) do not get the scope to participate in the reaction
mechanism. A noticeable feature in Figures (12-13) is that before the inhibitor (I)
concentration could completely reduce to zero, the next dose is applied and hence,
an immediate rise is seen in the inhibitor (I) concentration. Therefore, we can say
that in Figure (9) the dose amount is not sufficient to controlling the viral replica-
tion whereas in Figure (11) the inhibitor (I) could reach the maximum therapeutic
level and in Figures (12-13) it could exceed the maximum tolerance level of human
body.
In Figures (14-18), we fix the initial value of the dual inhibitor (I) of HIV-1 RT/IN
to 18µM as well as the constant dose Ic to 15µM and vary the dosing interval
τ (=3h, 4h, 5h, 6h, 8h respectively). It is worth noting that the Figures (14-18)
follow a reverse order in illustrating the nature of the curves of the components as
Figures (9-13), i.e, the curves of the Figures (14-18) follow the nature of the curves
of Figures (13-9) respectively. Hence, a detailed description is not needed here.
In Figure (19), we compare the viral double-stranded DNA (P ) concentration as
well as the integrated proviral DNA (P1) concentration in absence of dual inhibitor
(I) of HIV-1 RT/IN, in presence of dual inhibitor (I) of HIV-1 RT/IN with single
dose and in presence of dual inhibitor (I) of HIV-1 RT/IN with multiple doses in
impulsive way (taking the values same as Fig. (10) & Fig. (16)). In this figure
we omit the curves of other components (viral single stranded RNA (S1), dNTPs
(S2), host DNA (S3), dual inhibitor (I) of HIV-1 RT/IN) to observe the changes
of viral double-stranded DNA (P ) concentration and integrated proviral DNA (P1)
concentration explicitly. We can see that the maximum velocity achieved by viral
double-stranded DNA (P ) in presence of the inhibitor (I) with a single dose is
lower than the maximum velocity without inhibitor (I). Further, the declination
in formation of viral double-stranded DNA (P ) for multiple doses is very rapid as
compared to the other two. The main reason for such a prominent decrease of viral
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Figure 14. Concentration-time curves of the components of
model (4) for the impulsive dosing of dual inhibitor of HIV-1
RT/IN with the initial conditions S1(0) = 3.5µM , S2(0) = 5µM ,
S3(0) = 5.3µM , E1(0) = 3µM , E2(0) = 1.8µM , I0 = 18µM , im-
pulse dose input Ic = 15µM and the time interval of dosing τ = 3h.
We have taken the parameter values from Table (1).
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Figure 15. Curves of all the components of model (4) for the
impulsive dosing of HIV-1 RT/IN dual inhibitor with the initial
values and dose Ic same as Fig. (14). Here the dosing interval
τ = 4h and the parameter values are taken from Table (1).

double-stranded (P ) concentration is the inhibitory effect of the dual inhibitor (I)
of HIV-1 RT/IN to combating the HIV-1 infection. A similar thing happens for
the curves which represent the integrated proviral DNA (P1) concentration. Here,
we take two different impulse doses of the dual inhibitor (I) of HIV-1 RT/IN as
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Figure 16. Concentration-time curves of the components of
model (4) for the impulsive dosing of dual inhibitor of HIV-1
RT/IN with dosing interval τ = 5h. Here, the initial as well as
the parameter values and impulse dose Ic are fixed as those in Fig.
(14).
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Figure 17. Nature of the curves of the components of model (4)
for the impulsive dosing of HIV-1 RT/IN dual inhibitor with the
period of dosing τ = 6h using the initial conditions and impulse
dose input Ic same as Fig. (14). We have taken the parameter
values from Table (1).

well as two different dosing interval to perform the impulse. Curve F and curve
F1 represent the nature change in the concentrations of viral double-stranded DNA
(P ) and integrated proviral DNA (P1) respectively in presence of the inhibitor (I)
with the impulse dose 20µM and the time interval of dosing is 8 h, whereas curves
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Figure 18. Curves of the components of model (4) for the im-
pulsive dosing of dual inhibitor of HIV-1 RT/IN using the same
initial values and dose Ic as those in Fig. (14) for the time interval
of dosing τ = 8h and here the parameter values are collected from
Table (1).
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Figure 19. Variations of the curves for viral double-stranded
DNA concentration and integrated proviral DNA concentration in
different situation (without HIV-1 RT/IN dual inhibitor, in pres-
ence of HIV-1 RT/IN dual inhibitor with single dose & with multi-
ple doses in impulsive way) are seen in this figure using the initial
conditions and parameter values same as the above figures.

G & G1 illustrate the same thing for the impulse drug dose 15µM and the dosing
interval in this case is 6 h. We can see that the pattern of the curves F & G as
well as of the curves F1 & G1 are same but the results are better than single dosing
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(curves H and H1). Thus, we can see the significant effect of using dual inhibitor
of HIV-1 RT/IN for the treatment of HIV-1 infection.

6. Conclusion

In this paper, we formulated a mathematical model on the HIV-1 reverse tran-
scriptase (RT) and integrase (IN) catalysed reaction for HIV-1 replication and
studied the effectiveness of dual inhibitors of HIV-1 reverse transcriptase and inte-
grase which simultaneously work as non-nucleoside reverse transcriptase inhibitor
(NNRTI) and integrase inhibitor to combating HIV-1 infection. Although there are
several classes of dual inhibitors of HIV-1 RT/IN, here we take bisheteroarylpiper-
azine compounds (Ex: Delavirdine, Atevirdine) as NNRTI and β-diketo acids
(DKAs) group as integrase inhibitor. At first, we analyzed the model introduc-
ing dual inhibitor of HIV-1 RT/IN with single dose and then incorporated a one
dimensional impulsive differential equation to model the drug dynamics for multiple
dose administration. In order to obtain the closed form solution of this impulsive
differential equation model, we introduced Lambert W function. Using the Lam-
bert W function, we explicitly expressed the concentration-time curves for multiple
dose administration of HIV-1 RT/IN dual inhibitor. In our analytical study, we
have established the local stability of the equilibrium point in case of single dose
and also expressed the stability of the periodic solution for the case of multiple-dose
steady-state and obtained the existence condition ( Ic

τ < n(Ki1
′)
n
k3E10+Ki2k7E20)

for the periodic solution. We have shown that in order to design a periodic dosing
regimen, one large initial dose I∗ should be applied followed by a small dose Ic in
each dosing interval τ . Our numerical findings also justify the analytical results.
Here, in Figs. (9-13), we fix the dosing interval τ to 8h and vary the impulsive dos-
ing amount Ic as well as the initial dose I∗; while in Figs. (14-18), we choose time
interval τ as variable and fix the initial dose I∗ and impulse dose input Ic to 18µM
and 15µM respectively. Fig. (9) and Fig. (18) indicate that 5µM as well as 15µM
dose is not sufficient to suppress the viral load for a large time interval 8h, whereas
dosing amount 30µM and 35µM may exceed the human body tolerance level for
the same dosing period τ and therefore, can cause toxicity, which is identified in
Figs. (12-13). Similarly, we observe from Figs. (14-15) that for a shorter dosing
interval like 3h or 4h, 15µM dose can overpower the entire system which is also
not safe for a human body. These results imply that for a longer time interval τ , a
larger dose is required to maintain a therapeutic effect which is also confirmed in
Fig. (8). Moreover, as small as the dose Ic is, the less time is required to approach
the steady-state for a given dosing interval τ (Fig. (8)).

The present paper mainly focus on determining the completely analytical solu-
tions for a two-compartment model exhibiting nonlinear Michaelis-Menten elimina-
tion kinetics and to provide a basic idea on obtaining an effective dosing regimen for
dual inhibitor of HIV-1 RT/IN to treating HIV-1 infection. Therefore, the results
obtained in this article can be quite useful for expanding the treatment options to
HIV-1 infected patients belonging to the complex HAART therapy.
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Appendix A. Appendix. A bit details on dual inhibitors of HIV-1
reverse transcriptase and integrase

A dual action drug is a chemical entity that combines the pharmacophores of
two drugs with different mechanisms of action in a single molecule which inter-
acts simultaneously with multiple targets [8]. In recent years, dual inhibitors of
HIV-1 reverse transcriptase (RT) and integrase (IN) or Portmanteau Inhibitors
have been designed by merging a NNRTI such as 1-[(2-hydroxyethoxy) methyl]-6-
(phenylthio) thymine (HEPT) and β-diketo acid derivatives (DKAs) as Integrase
Inhibitors [33], [34]. To obtain the merged compound 3, a DKA moiety was incor-
porated into the NNRTI (1) which is a very potent HIV-1 RT inhibitor, derived
from HEPT (Figure (20)) [8]. A second series of substituted merged inhibitors
(4) were also prepared to enhance the dual activity of these compounds (Figure
(20)) [8]. All the merged compounds inhibited both enzymes RT and IN with
IC50 values in the nano molar (0.0092-0.23 µM) to low micro molar (1.8-7.7 µM)
range, respectively and showed very low toxicity when tested in a cell-based as-
say against HIV-1 replication [8], therefore can be an alternative to combination
therapy. In 2008, Wang and Vince [35] reported a new series (Figure (21)) [15] of
dual inhibitors of HIV-1 RT and IN by incorporating a diketo acid (DKA) fragment
into the NNRTI delavirdine. In 2015, He and Chen group [19] synthesized a series
of diarlyprimidine–quinolone analogs (Figure (22)) [15] by hybridizing etravirine
(TM125), a second generation NNRTI and elvitegravir (GS-9137), an integrase in-
hibitor. The marged compounds capable of inhibiting both the enzymes RT and
IN provide a new design idea for the development of HIV-1 RT/IN dual inhibitors.

Appendix B. Appendix. Local stability of the periodic solution

Theorem 2. The periodic solution given by Equation (67) is locally stable.

Proof. We will show that any solution of model (24) will asymptotically approach
the periodic solution (67), for any given initial dose. To do this, we first prove that
the solutions given by Equations (59) and (61) are locally stable. Now, solution I∗1
at equilibrium is locally stable if the following condition

∂(I1(t
+
k+1))

∂(I1(t
+
k ))

∣∣∣
I1(t

+
k )=I∗

1

< 1(70)

is satisfied.
Solving the above inequality (70) by applying the chain rule, we have

(Ki1
′)
n
LambertW (Z)

1 + LambertW (Z)

[
1

(Ki1
′)
n +

1

I∗1

]
< 1
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3

Figure 20. Examples of marged dual inhibitors using HEPTs and
DKAs as NNRTI and integrase inhibitors.

Figure 21. Examples of hybrids of Delavirdine and DKAs as dual inhibitors.

i.e.,

LambertW (Z)

1 + LambertW (Z)

[
(Ki1

′)
n

I∗1
+ 1

]
< 1(71)

where, Z =
I∗
1

(Ki1
′)n exp

(
I∗
1−n(Ki1

′)nk3E10τ
(Ki1

′)n

)
. Now we show that, if the positive

steady-state I∗1 exists then the inequality (71) always holds true. It follows from
Equation (54) that we have

I∗1
(Ki1

′)
n = LambertW

(
I∗1

(Ki1
′)
n exp

(
I∗1 − n(Ki1

′)
n
k3E10τ

(Ki1
′)
n

))
+

αIc

(Ki1
′)
n

⇒ I∗1
(Ki1

′)
n = LambertW (Z) +

αIc

(Ki1
′)
n .(72)
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Figure 22. Examples of diarlyprimidine–quinolone hybrids as
dual inhibitors.

Substituting the above expression for I∗
1

(Ki1
′)n into (71), we obtain

LambertW (Z)

1 + LambertW (Z)

[
1

LambertW (Z) + αIc
(Ki1

′)n
+ 1

]
< 1

⇒ LambertW (Z)

(1 + LambertW (Z))

(1 + LambertW (Z) + αIc
(Ki1

′)n )

(LambertW (Z) + αIc
(Ki1

′)n )
< 1.(73)

Let us define a function

f(x) =
1 + LambertW (Z) + x

LambertW (Z) + x
, x > 0

with f(0) = 1+LambertW (Z)
LambertW (Z) . This implies

LambertW (Z)

1 + LambertW (Z)
f(0) = 1.(74)

Since
d(f(x))

dx
=

−1

(LambertW (Z) + x)2

< 0,

we can say that f(x) is a monotonically decreasing function. This implies that the
inequality (73) holds true and hence, the local stability of the steady-state I∗1 is
proved. Similarly, we can show that the steady-state I∗2 is also locally stable. Now
we prove the local stability of the steady-state I∗. Since I(t) = I1 + I2(t) (45) and
I∗ = I∗1 + I∗2 (53), therefore by applying the ϵ − δ definition for stability one can
prove that I∗ is stable, provided both the steady-states I∗1 and I∗2 are stable.

Definition 1. The equilibrium Xe of an nonlinear autonomous system X ′ = f(X),
f : D → <n (a locally Lipschitz map from domain D ⊆ <n) is
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(i) stable if for each ϵ > 0 there exists a δ(ϵ) > 0 such that
‖ X(t0)−Xe ‖ < δ(ϵ) =⇒‖ X(t)−Xe ‖< ϵ(75)

(ii) asymptotically stable if it is stable and in addition δ(ϵ) can be chosen such
that

‖ X(t0)−Xe ‖ < δ(ϵ) =⇒ lim
t→∞

‖ X(t)−Xe ‖= 0.(76)

�
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