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Investigation Brief  
Suntan creams stop harmful UV radiation 

reaching the skin. Manufacturers’ products 

are rated with a Sun Protection Factor 

(SPF). Suntan creams can have SPF values 

from 6 to over 50.  

UV radiation monitors normally measure 
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This booklet is one of a number that have been written to support investigative work in Higher and 

Advanced Higher Physics.  It develops the skills associated with handling uncertainties.  Uncertainties 

were introduced in the booklet Precision, accuracy and uncertainty, written to support Higher 

Sciences.  This booklet includes much of the material in the higher booklet and extends this as 

appropriate for use at Advanced Higher.  Content specific to Advanced Higher is identified below. 
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Precision and Accuracy 

 

When we carry out investigations, it is important 

that the measurements we take are accurate and 

precise.  Do these two words mean the same 

thing?  Certainly most people use the words 

interchangeably.  However, in physics, the words 

have different meanings. In summary, the 

difference between accuracy and precision is as 

follows: 

 

The accuracy of a measurement tells you how  

close the measurement is to the “true”  or accepted 

value.   

 

The precision of a measurement tells you 

something about the number of significant 

figures in the measurement.   

 

Activity 

 

True or false?  

 

The examples opposite illustrate measurements 

that are commonly made in physics.  A student has 

made a comment about each measurement.  

Consider each statement.  Is it true or false?  

 

 

The answers and comments are on page 6. 

You may like to read through the next two pages 

before checking your answers.  You may even 

change your mind! 

 

A – Measuring temperature 

 

“The thermometer I have used to measure the 

temperature has a scale that reads to the nearest 

0.1 oC.  Because of this, my measurement is likely 

to be accurate.” 

 

B – Measuring mass 

 

“The balance I have used to measure the mass of 

the block is very high quality and has been 

calibrated against known masses.  Because of this, 

my measurement is likely to be precise.” 

 

C – Measuring time 

 

“I have used a stopwatch to measure the period of 

a pendulum.  I have repeated the measurement 

and found an average.  This gives me a more 

precise answer.” 
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Accuracy 

 

When we measure something in a physics 

investigation, we are trying to find the actual 

or true value of the property being measured.   

If the temperature of a liquid is actually 20 OC, 

then we would hope our thermometer gives us 

a value as close to 20 OC as possible.  A 

thermometer that reads 15 OC say is not very 

good.   

The accuracy of a measurement is how close it 

is to the true value.  Our thermometer that 

reads 15 OC instead of 20 OC is certainly not 

very accurate. 

 

 

Whatever we are measuring, the accuracy of 

our measurement depends on the quality of the 

measuring device we are using.   

If you wish to measure your own weight you 

(probably) want the scales to read your true 

weight.  However, many bathroom scales 

under read or over read.  How can you know 

how close your scales are to the true value? 

Well, you can repeat the measurement using a 

higher quality scale  - but even so, how can 

you be sure that this is more accurate?  

Ultimately, we can never measure a true value 

with 100% confidence.  Despite this, we 

should still try to ensure that all our 

measurements are as accurate as possible.  As 

a student experimenter, you may be restricted 

in the equipment you will use.  Nevertheless, 

there are things that you can do to improve the 

accuracy of your measurements.  A good start 

is to ensure the instrument is zeroed and used 

correctly!   

 

 
 

Technical specification data  

 

Manufacturers of scientific instruments often 

supply data sheets that specify how accurate the 

instrument is.  The instruments have been tested 

against very accurate standard instruments and 

the results are shown on the data sheet.  

As you might expect, instruments that are 

guaranteed to be more accurate are usually more 

expensive. 
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               Precision 

 

A precise measurement is one that is more exact 

than one that is not precise. 

 

Suppose someone describes themselves as being 

in their teens and about 2 m tall.  Based on this, 

you don’t know much about them.  The 

description is not very precise.  However, a more 

precise description might have stated an age of 17 

years and 2 months and a height of 1.97 m.   

 

Where possible, measurements in science should 

be precise.  To make precise measurements 

requires suitable instruments.   

 

 

 

 

 

 

 

 

  

Consider the two rules being used to measure the 

length of the same pencil.  The lower rule allows 

a more precise measurement to be taken.   

 

 

 

 

 

 

 

 

 

The length of the pencil as measured by the upper 

rule is somewhere between 9 cm and 10 cm.  We 

might guess and say 9.5 cm but the decimal place 

is just a guess.  The smallest unit on this rule is   

1 cm. 

With the lower rule the length is measured to be 

9.5 cm and we might guess at 9.51 cm.  The 

smallest unit on this rule is 1 mm. 

 

The measurement using the lower rule is more 

precise because it uses a smaller unit to 

measure with. 

 

 

  

 

 

A selection of instruments is shown.  Which are 

likely to enable precise measurements to be 

taken? 
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A measurement can be precise – that is, it may 

have lots of decimal places – but it can be quite 

inaccurate.  Just because we use a measuring 

device that has very small smallest divisions 

doesn’t mean that that we can necessarily be 

confident that we have found the true value of 

the property we are measuring.  

For example, if we might measure the 

resistance of a resistor to be 5.142 Ω.  However, 

if the real value is 6.1 Ω. then our measurement 

may be precise, but it is inaccurate.   

 

When we make measurements in our physics 

investigations, we should try to ensure that the 

measurements are precise and accurate.   

 

To ensure our measurements are as accurate as 

possible, we mostly rely on the quality of the 

instrument we are using.  Is it possible to take 

measurements that are completely accurate?  

This is an interesting question that can lead to 

some philosophical thoughts.  It can be argued 

that we can never measure something with 

100% accuracy.  Even if we use the very best 

instrument that is available, that is as accurate 

and precise as possible, we can never be sure 

that our measurement is 100% correct.  There 

will always be a certain amount of uncertainty 

in our measurement. 

 

Activity – group discussion 

 

Discuss examples of measurements that have 

high accuracy but low precision.  

 

Discuss examples of measurements that have 

high precision but low accuracy.   

 

  

Answers to the questions on page 3 

 

A – Measuring temperature 

 

 

The statement is false.  The thermometer may be 

calibrated incorrectly so that readings are precise 

but inaccurate (i.e. wrong). 

 

B – Measuring the mass  

 

The statement is false.  A high quality, well 

calibrated balance is likely to be accurate i.e. the 

value is close to the true value.   

However, it may or may not 

 be precise.  This depends  

on the number of decimal  

places displayed. 

 

C – Measuring time 

 

 
The statement is false.  Repeating measurements 

is always good practice in physics 

investigations.  By repeating the measurements 

and finding a mean, it is likely that value will be 

found that is closer to the true value i.e. the 

mean improves the accuracy. 
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Measurement and uncertainty 

 

It is impossible to measure anything with 100% 

accuracy.  No matter how good our measuring 

device, and no matter how small the smallest unit on 

our measuring scale, there will always be an 

uncertainty in any measurement we make.  One of 

the tasks of a good physicist when they carry out 

experiments is to make sure they have a good 

understanding of the uncertainties involved in 

measurements. 

 

There are a number of ways in which uncertainties 

can arise in any measurement.  These are 

summarised below and are discussed in detail in the 

following pages. 

 

 

Random uncertainties occur when an experiment is 

repeated and slight variations occur.  Random 

uncertainties can be reduced by taking repeated 

measurements. 

 

Scale reading uncertainty is a measure of how well 

an instrument scale can be read.  In general, 

instruments with small unit divisions have a reduced 

uncertainty. 

 

Calibration uncertainty is a measure of how 

accurately an instrument has been calibrated against 

a known standard.  Manufacturers often state the 

accuracy of their instrument.  However, this 

accuracy may reduce with age. 

 

Systematic uncertainties occur when readings 

taken are all either too small or all too large.  They 

can arise because of a calibration error or poor 

experimental design or procedure. 

 

 

 

 

 

 

Activities  

 

1.  Work with a group of students using a rule to 

measure the width of say a laboratory bench.  Each 

student should measure the width on their own, 

aiming for as precise measurement as they can.  

Don’t look at each other’s measurements until all 

have competed the task.   

How similar or different were the measurements? 

Can anyone claim their measurement is “correct”? 

 

  

2.  Look at the two tachometers.  (Tachometers 

measure revolutions per minute).  Which one 

would have the largest scale reading uncertainty? 

 

 

 

 

 

 

 

 

Is the tachometer that allows the most precise 

measurement to be made necessarily the most 

accurate?   

 
 

  

 
 

 

 

3.  Gather a selection of rulers from different 

manufacturers.  Compare their lengths.  Are they 

all identical? 

Is there any way of knowing which ruler is best 

(most accurate)? 

 



 

Page 8 

 Advanced Higher Physics 

Uncertainties in AH Physics 

 

A closer look at random uncertainty 

 

 

 

               

Random effects 

 

If a measurement is repeated many times, the 

result may not be the same each time.  Small 

variations in the experimental conditions or 

differences in readings taken may result in 

different values being recorded.   

Examples of where random uncertainty occur 

include: 

 

• Using a stopwatch to measure the period 

of a pendulum. The reaction time of the 

person doing the timing may vary 

slightly each time. 

 

• Measuring a force.  The force applied 

may change slightly each time it is 

applied. 

 

• Measuring the irradiance of light at 

distances away from the source.  The 

distance from the light source may be 

measured slightly differently each time. 

 

 

 

Random uncertainty in a mean value 

 

Random uncertainties are equally likely to make 

measurements higher or lower than the true value.  

By repeating the measurements, the random 

uncertainties can be cancelled out by calculating the 

mean of the readings. 

Suppose an experiment to determine the period of a 

pendulum has been repeated a number of times. 

 

Period in seconds:  0.63, 0.59, 0.57, 0.60, 0.62, 0.59 

 

Mean period = 

 

0.63+0.59+0.57+0.60+0.62+0.59

6
 

 

Mean period = 

 

3.63

6
= 0.60 s 

 

The uncertainty in this value is: 

 

 

uncertainty =  
max -  min

n
 

 

 

uncertainty =  
0.63− 0.57

6
=

0.06

6
= 0.01 

 

The final result is:  Period = 0.60 ±  0.01 s 

IMPORTANT 

 

Activity 

 

Roll a marble or ball bearing down a slope 

so that it collides with a polystyrene cup 

that has a slot cut in it.  The cup gets 

pushed horizontally.  Mark the position 

that the cup gets pushed to by making a 

cross next to the nearest line.  Repeat this 

until a pattern of crosses is seen.  

The spread of distances moved by the cup 

should be visible.  Use the pattern to find 

the mean distance travelled.  The 

maximum and minimum can be used to 

find the random uncertainty in this value. 
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The digital meter shown on the right displays a voltage. 

What is the uncertainty in this reading? 

 

As a general rule, the uncertainty is taken as the smallest change that 

would alter the display.  Usually this is the same as saying the 

uncertainty is 1 in the last digit of the display.   

 

On the voltmeter shown, the display reads 12.88 V.  A change of 

0.01 V would change the display, so this is the uncertainty in the 

reading. 

 

 

 

The voltage is 12.88 ± 0.01 V 

 

 

The analogue ammeter shown on the right displays a 

current. 

What is the uncertainty in this reading? 

 

As a general rule, the uncertainty is taken as half of the 

smallest division on the scale.  

 

On this ammeter, the needle is between 1.6 and 1.7 so we 

might reasonably estimate the current to be 1.65 A.  The 

smallest division is 0.1 A.  Half of this is 0.05 A so this 

is the uncertainty in the reading. 

 

 
The current is 1.65 ± 0.05 A 

 

 

 

Activity 

 

Look at each of the scales and state the reading as a value ± uncertainty. 

 

 

 

 
 

 



 

Page 10 

 Advanced Higher Physics 

Uncertainties in AH Physics 

 

A closer look at calibration and systematic uncertainty 

 

 

 

               

 

 

One example of systematic uncertainty in an 

experiment is using a measuring device that is 

not calibrated correctly.  This is calibration 

uncertainty.  Examples include: 

• A meter rule that is not exactly one 

meter in length. 

• A balance that under or over-reads 

mass.  

• An analogue ammeter that has not had 

the zero correctly set will consistently 

read incorrectly. 

• A timer that runs slowly. 

 

Although it is true that you will occasionally 

use measuring devices that introduce 

calibration uncertainty into your results, it is 

much more likely that other factors have a 

greater effect.  When evaluating your 

experimental procedures, try not to fall into the 

trap of simply stating that the experiment could 

have been improved by using “better 

equipment”. 

 

Systematic uncertainty in experimental procedures 

 

Systematic uncertainty occurs when there are faults in 

the system you use to carry out the experiment.  They 

can be hard to spot and sometimes you may only 

realize that there are systematic uncertainties in your 

procedure when you complete your experiment. 

 

A good way of understanding how systematic 

uncertainty may occur in experiments is to consider a 

number of examples. 

 

 

 

1. Determining resistance.   

 

The voltmeter in the circuit 

shown measures the voltage 

across the supply rather than 

the voltage across R.  The 

value of R determined by 

calculating V/I will not be 

the true resistance of the 

resistor. 

 
2. Determining the speed of sound in air.   

 

 

 

 

 

 

A loudspeaker, microphone and a computer can be 

used to measure the speed of sound in air.  However, 

in the set up shown, it is likely that the sound will 

travel through the bench.  Sound travels more 

quickly through a solid, so an incorrect time will be 

recorded by the computer. 

 

Detecting systematic uncertainty  

 

Systematic uncertainty may show up on a 

graph of results.  If you expect that the graph 

should go through the origin and it doesn’t, 

then this is a sign that you have something 

wrong with your experimental setup and you 

have systematic uncertainty.  

3. Determining the refractive index of a material 

 

The refractive index of a material can be found by 

measuring angles of incidence and angles of refraction.  

These angles are measured from a line drawn at right 

angles to the surface of the material.  If this line (the 

normal) is not drawn correctly, then all the measured 

angles will have a systematic uncertainty. 
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               Absolute uncertainty 

 

The aim of all physics investigations is to draw a 

valid conclusion.   Before any conclusion can be 

considered to be valid, the uncertainty in 

measurements needs to be considered.  If the 

uncertainty is large, then it is impossible to have 

much confidence in our results.   

 

It is important, particularly at Advanced Higher 

level, to have a clear understanding of what the 

uncertainty is in all measurements. 

 

The initial statement of the uncertainty in a 

measurement is in an absolute form.  This means 

that the value is stated with a plus or minus 

indicating the range of possible values that would 

be possible using the instruments and techniques 

used in the experiment. 

 

Examples of absolute uncertainties include: 

 

V = 4.2 ± 0.1 V 

 

t = 25.2 ± 0.2 s 

 

m = 15.3 x 103 ± 0.05 kg 

 

Fractional and percentage uncertainty 

 

The absolute uncertainty in a measurement does 

not allow us to easily compare the relative size of 

the uncertainties in a number of measurements.  

The next few pages will consider how to combine 

uncertainties.  Before that, it is important to be able 

to convert absolute uncertainty into percentage 

uncertainty.  In order to do this, it is first necessary 

to find the uncertainty as a fraction of the value 

that is measured.   

 

In the example V = 4.2 ± 0.1 V, the fractional 

uncertainty is 

 

0.1

4.2
 which is 0.029 (2 sig figs) 

 

0.029 is the fractional uncertainty in the value of 

the potential difference V. 

 

Fractional uncertainties are used when combining 

uncertainties.   

 

In general, fractional uncertainty is given by

 

x

x
 

where 

 

x  is the absolute uncertainty in the value x. 

 

To easily compare the magnitude of uncertainties, 

it is best to convert to percentage uncertainty. 

 

The percentage uncertainty is given by 

 

x

x
100 

 

The percentage uncertainty in the value of the 

potential difference is 2.9%. 

Activity 

 

State the absolute, fractional and percentage uncertainty in each of the following: 

 
I = 1.3 ± 0.2 A,    T = 28.4 ± 0.1 oC,    C = 1200 ± 10  μF,    r = 0.053 ± 0.001 mm,    d = 1.4 x 109 ± 0.1 x 109 m 
 

Which measurement has the largest percentage uncertainty? 
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Combining random, calibration and reading 

uncertainties 

 

Each measurement we take is subject to a number of 

uncertainties.  These are random, calibration and 

reading uncertainties.  Each may have a large, small 

or negligible effect on the overall uncertainty in the 

value.  They need to be added together in some way 

to allow a single estimate of the uncertainty in a 

value. 

 

When combining random, calibration and 

reading uncertainties, it is not necessary to 

convert to fractional or percentage uncertainties.   

 

To find the combined uncertainty find the square 

root of the sum of the squares of each of the 

uncertainties. 

So, 

 

w = x2 + y2 + z2   where 

 

 x, 

 

 y, 

 

 z are 

the uncertainties in the values x, y, and z and 

 

 w is 

the combined uncertainty 

This is best illustrated with a number of examples. 

 

Example 1 

 

The mass of a metal block is measured with a digital 

balance which has a smallest reading of 0.01 grams.  

The display reads 10.42 g and the manufacturer 

claims the balance is accurate to within 0.005 g.  

One reading only is taken. 

 

Random uncertainty = not known as only one 

reading has been taken. 

Calibration uncertainty = 0.005g 

Reading uncertainty = 0.01 g 

 

       

 

w = x2 + y2  

so   

 

w = 0.012 + 0.005 2
 

and 

 

w = 0.02   ( to 1 sig fig) 

 

The mass is 10.42 ± 0.02 g 

 

(Notice that the uncertainty in the final result is 

given to one significant figure.  Remember, 

uncertainties are estimates and there is no point is 

including meaningless significant figures)  

Example 2 

 

The period of a pendulum is measured five times 

and the mean period is found to be 2.12 s.  The 

random uncertainty is calculated to be 0.01 s.  

The stopwatch used to time the period has an 

estimated calibration uncertainty of 0.05 s and 

the reading uncertainty is estimated at half of the 

smallest division which is 0.1 s.   

 

Random uncertainty = 0.01 s 

Calibration uncertainty = 0.05 s 

Reading uncertainty = 0.05 s 

 

       

 

w = x2 + y2 + z2  

       

 

w = 0.012 + 0.052 + 0.052
 

        

 

w = 0.07  
 

The period is 2.12 ± 0.07 s 

 

 

Example 3 

 

The length of a pendulum is measured using a 

steel ruler. The calibration uncertainty is 0.1 mm 

and the reading uncertainty is half of the 

smallest division which is 1 mm. The combined 

uncertainty 

 

w is given by: 

 

 

w = x2 + y2    where 

 

x  = 0.1 

                                                and 

 

y  = 0.5 

 

Notice that in this case, one uncertainty is 

significantly larger than the other.  Its effect 

swamps the effect of the smaller and in this case, 

the smaller uncertainty can be ignored.   

 

The uncertainty in the length of the pendulum  

is ± 0.5 mm 

 

In general, if one uncertainty is one third or 

less than the largest, it can be ignored. 
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               Uncertainties in a final result  

 

When the measurements of an investigation are 

used in a calculation to find a final result, it is 

necessary to consider the effect of the uncertainty in 

each value on the final result.   

 

Values can be added, multiplied, divided or raised 

to a power, or a combination of these, to find a final 

result.  The following describes the way each 

arithmetic operation is handled. 

 

Adding or subtracting values 

 

The method for combining uncertainties for values 

that are added or subtracted is the same as for 

combining random, calibration and reading 

uncertainties for a single value. 

The absolute uncertainty is the square root of the 

sum of the squares of each of the uncertainties. That 

is 

 

w = x2 + y2 + z2  where 

 

 x, 

 

 y, 

 

 z are 

the uncertainties in the values x, y, and z and 

 

 w is 

the combined uncertainty. 

 

 

Raising to a power 

 

When raising a value by a power it is best to work 

with percentage uncertainties. 

The percentage uncertainty in xn is 

 

n
x

x
100 

where 

 

 x is the uncertainty in the value x and n is 

the power to which x is raised. 

Once this percentage uncertainty is found, it can be 

converted back to absolute uncertainty. 

 

 

Multiplying or dividing values 

 

The fractional uncertainty of a result that is 

calculated by multiplying or dividing 

values is found by 

222








 
+







 
+







 
=



z

z

y

y

x

x

w

w
 

where 

 

 x, 

 

 y, 

 

 z are the uncertainties in 

the values x, y, and z.  w is the calculated 

value and

 

 w is the combined uncertainty. 

 

 

Uncertainties in trigonometric functions 

 

When an angle is measured in an 

investigation, it is quite common to find 

the sin, cos or tan of the angle.  If the 

uncertainty in the angle is say  ± 5 
o, what 

is the uncertainty in the sin of the angle?   

Trigonometric functions are non-linear i.e. 

doubling the angle does not double the sin 

of the angle.  There are rigourous 

approaches to working with uncertainties 

of trigonometric functions. However, it is 

sufficient at AH level to simply state that 

the percentage uncertainty in the sin of an 

angle is the same as the percentage 

uncertainty in the angle.  It is worthwhile 

remembering (and stating in an 

investigation report) that this is an 

approximation. 

Other non-linear funtions (1/x, log, ln,  

exp) may be treated in the same way.   
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Example 1 – uncertainty in a sum  

 

The temperature of a liquid is measured to rise from 

T1 = 17.5 oC to T2 = 24.5 oC. 

 

The thermometer has a reading uncertainty of 0.5oC 

and an unknown calibration uncertainty. Find the 

uncertainty in the temperature rise T2 - T1. 

 

In this case, there is no random uncertainty because 

each temperature has only been measured once.   

Each temperature value is likely to have a 

calibration uncertainty.  However, it is reasonable 

to assume that the two values of temperaure will 

have the same calibration uncertainty so when the 

values are subtracted, the two calibration 

uncertainties will cancel out.   This means that we 

only need to consider reading uncertainties. 

 

T1 = 17.5 ± 0.5 oC 

T2 = 24.5 ± 0.5 oC 

 

 

T = T1
2

+ T2

2
 

 

 

T = 0.5 +0.5  
 

 

T = 0.7  oC 

 

The temperature rise is 7.0 ± 0.7 oC 

 

(Notice that this corresponds to a 10% uncertainty 

in the result.  This is high and is likely to make it 

difficult to draw a valid conclusion from this 

investigation.  It would be better to repeat the 

measurements with a thermometer that had a 

smaller reading uncertainty.) 

Example 2 – uncertainty in a value raised to a 

power 

 

The speed v of a rotating object is measured to  

be 2.51 ± 0.01 m s-1.   

 

Find the uncertainty in v2. 

 

v2 = 6.30 m2 

 

To find the uncertainty in v2 use the relationship: 

 

uncertainty =

 

n
v

v
100 

 

uncertainty =

 

2 
0.01

2.51
100 

 

uncertainty = 0.8% 

 

This is a percentage uncertainty.   

To convert to an absolute uncertainty,  

find 0.8% of 6.30.  This is 0.05. 

 

v2 = 6.30 ± 0.05 m2 s-2    
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               Example 3 – uncertainty when multiplying or 

dividing values 

 

The centripetal force F can be found using the 

relationship

 

F =
mv2

r
where m is the mass of the 

rotating object, v is the speed and r is the radius. 

 

The following values have been measured: 

 

m = 0.0434 ± 0.0002 kg  

v = 2.51 ± 0.01 m s-1  

r = 0.842 ± 0.002 m 

 

Calculate the force F and determine the uncertainty in 

this value. 

 

First we need to find v2 and the uncertainty in v2. 

See example 2 on the previous page. 

v2 = 6.30 ± 0.05 m2 s-2    

 

Next find F 

 

 

F =
mv2

r
=

0.0434  2.512

0.842
= 0.325 N 

 

 

 

To find the uncertainty in the value of F 

value use the relationship 
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The fractional uncertainty is 0.009 

 

The uncertainty in F is therefore 

N003.0325.0009.0 =  

 

Finally we can write the value of the force F 

together with the uncertainty 

 

003.0325.0 =F  N 

 

(Notice the significant figures in the value 

and the uncertainty) 
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Error bars 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     

Representing uncertainty on a graph 

 

It is very common in physics to plot graphs of 

variables.  When the uncertainties have been 

estimated, it is sensible to include this 

information on the graph. This is done using 

error bars. 

 

An error bar is a way of visually representing an 

uncertainty in a measurement.  It is drawn so that 

so that the maximum and minimum values that 

the measurement lies within can be seen. 

 

 

 

 

The term error bar is slightly unfortunate.  In 

physics we try to avoid the use of the word 

error when we refer to uncertainties.  An error 

is a mistake.  It is something that we have 

done wrong. On the other hand, an uncertainty 

is an inevitable consequence of making a 

measurement.  We do our best to reduce 

uncertainties.  Despite this, the term error bar 

is commonly used and to put it bluntly, we are 

stuck with it.  It may be useful to think that an 

error bar is a visual representation on a graph 

of the uncertainties in our measurements.   

 

Error bars can be drawn to represent uncertainty 

in only one axis as shown, or they can represent 

uncertainty in both axes.  The length of the two 

error bars may be different as shown below. 

 

 

 

 

Error bars may be drawn by hand or can be 

generated using a spreadsheet.  The graph below 

has been produced using Microsoft Excel and 

error bars have been included.  The values of 

voltage have an uncertainty of ± 0.1 V and 

current has an uncertainty of ± 20 mA. 

 

 

Error bars are useful when a graph includes a 

trendline (line of best fit).  When a trendline is 

drawn, it may not go through any of the points 

on a graph.  However, it should go through all 

the error bar lines.  The graph below shows a 

trendline which goes through all the error bars 

except one.  This suggests that something is 

wrong.  The point could be plotted 

incorrectly, or a mistake was made in making 

the measurement.  Alternatively, if the point is 

plotted correctly, then there is likely to be 

something worth investigating at the values 

that do not lie on the line. 

 

 

 

To include error bars on a graph produced by 

Microsoft Excel, click on the ‘Chart Tools’ tab, select 

the ‘Layout’ sub-tab and choose ‘Error Bars’. 
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Uncertainty in a gradient 

 

 

 

               
The equation of a straight line 

 

Finding the gradient of a line of best fit is a very 

powerful technique in physics. 

For example, the gradient of a graph of voltage 

against current is resistance. Also, the gradient of 

a velocity/time graph is the acceleration.   

 

The gradient of a straight line graph can be found 

using the formula 

 

m =
y2 − y1

x2 − x1

. 

 

Alternatively, if a graph has been drawn using 

Microsoft Excel, displaying the equation of the 

line is one of the options when a trendline is 

selected.  The graph below displays the equation 

of the line.  

 

The gradient of the graph is 0.5214. 

We can conclude that the acceleration of the 

object is 0.52 m s-2 (2 sig figs). 

The equation also indicates the point at which the 

graph cuts the y axis.  This may be helpful in 

identifying systematic uncertainty. 

 

 

Uncertainty in a gradient - introduction 

 

The gradient of a graph is often used to 

determine a final result.  The values used to plot 

the graph will likely have uncertainties 

associated with them.  It therefore makes sense to 

consider what the uncertainty in a gradient is. 

 

Before looking at techniques to find the 

uncertainty in a gradient it is necessary to 

consider what is meant by an uncertainty.   

 

First, an uncertainty is an estimate.  To state that 

the length of something is say 0.49 ± 0.1 m does 

not mean we are completely sure that the length 

is between 0.48 m and 0.50 m.  There is still a 

chance that the true value of the length is outwith 

these values.  However, the chance of this is 

small.  In more advanced treatments of 

uncertainties, it is possible to quantify the chance 

of a result lying within the uncertainty.  A 

statistical treatment allows results to be declared 

to be within a certain number of standard 

deviations (sigma).  For example, the discovery 

of the Higgs Boson was declared to five sigma.  

This means that physicists could be confident of 

their result with 99.99997 % certainty. 

 

It is important to recognize that there is no such 

thing as an absolute or true value of uncertainty.  

In relation to finding the uncertainty in a 

gradient, all we can do is apply techniques to 

estimate the uncertainty.  The following pages 

describe three of these techniques.  The first two 

have a basis in a graphical interpretation.  The 

third is based on statistics. 
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Uncertainty in a gradient – worst and best fit lines 

 

 

 

               
Use the error bars 

 

Consider the following sketch of a graph.  

 

It appears that there is a linear relationship 

between y and x. Furthermore the constant of 

proportionality is the gradient.  A line of best fit 

is included below. 

 
The line of best fit has been drawn by attempting 

to ensure that there are an equal number of points 

either side of the line. 

The gradient m can be found using 

 

m =
y2 − y1

x2 − x1

 

 

One way of estimating the uncertainty in the 

gradient is to draw error bars on the graph.  The 

graph is drawn again with these in position. 

 

 

The line of best fit in the graph (at the bottom of 

the left column) passes through all the error bars.  

It is possible to draw further lines that just pass 

the error bars.  Two lines have been added to the 

graph.  The line with gradient m1 shows the 

minimum gradient that still passes through all the 

error bars.  The line with gradient m2 shows the 

maximum gradient.  By finding the gradients m1 

and m2, the uncertainty in the gradient of the line 

of best fit can be estimated. 

This method for estimating the uncertainty in a 

gradient has merit.  However, there are several 

disadvantages.   

First, it is sometimes difficult to draw lines that 

pass through all the error bars, especially if error 

bars have been drawn in both the horizontal and 

vertical axes.  

It is also possible that the difference between the 

gradient of the line of best fit and m1, and 

between the gradient of the line of best fit and m2 

are not equal.   



 

Page 19 

 Advanced Higher Physics 

Uncertainties in AH Physics 

 

Uncertainty in a gradient – parallelogram method 

 

 

 

               
Find the centroid 

 

The points on a graph can be imagined to be like 

masses placed on a see-saw.  There is a point, 

called the centroid, which acts like a centre of 

mass.  The points lie equally distributed to the 

left and right of the centroid.  Similarly, the 

points are distributed equally above and below 

the centroid. 

It is useful to find the centroid because the line of 

best fit will pass through it.   

The centroid is found by finding the mean of all 

the x values of the points.  This is its x co-

ordinate.  The y co-ordinate is found by finding 

the mean of all the y values. 

The centroid and line of best fit are shown below. 

 

One way of estimating the uncertainty in the 

gradient is to draw lines parallel to the line of 

best fit, one above and passing through the 

highest point, and one below, passing through the 

lowest point.  These have been included in the 

graph below. 

 

The lines can be joined as shown to form a 

parallelogram.  This is shown below and the 

corners of the parallelogram have been labelled. 

 

The diagonals of the parallelogram can be joined 

and these can be used to estimate the uncertainty 

in the gradient.   

To do this, first find the co-ordinates of the 

points A, B, C and D by reading off the x and y 

values on the graph.  

Next find the gradient of the diagonals AC and 

BD using  

 

m =
y2 − y1

x2 − x1

. 

The gradients m(AC) and m(BD) can be used to 

find the uncertainty 

 

 m in the gradient m of the 

graph simply by finding the difference in the 

gradients of the two diagonals and dividing by 

two.   

 

m =
m(BD) −m(AC)

2
 

 

However, there is a better way of calculating the 

uncertainty and that is to recognise that the 

number of points that are plotted influences the 

uncertainty in the gradient.  Generally, the more 

points that are included, the smaller is the 

uncertainty.  This can be taken into account by 

using the following equation that is derived using 

a statistical approach.  In the equation, n is the 

number of data points plotted on the graph. 

 

 

 

m =
m(BD) −m(AC)

2 n − 2( )
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Uncertainty in a gradient – LINEST function 

 

 

 

               

 

Statistics and Microsoft Excel 

 

Microsoft Excel is a spreadsheet program that is 

commonly used to produce graphs in physics.  

The data that has been collected is first entered 

into cells to make a table of results.   

One of the powerful features of a spreadsheet 

program is that functions can be used to process 

the values entered into the cells.  For example, 

the sum of a column of values can easily be 

found using the function SUM.  Other functions 

include AVERAGE, MAX and MIN.  There are 

many other functions that can carry out statistical 

calculations on a table of results.  One that can be 

used to allow us to estimate the uncertainty in a 

gradient is LINEST. 

To learn how to use LINEST, consider the 

following table of results which have been 

entered into a spreadsheet. 

Current/mA Voltage/V 

0 0 

0.068 0.5 

0.139 1.0 

0.241 1.5 

0.308 2.0 

0.358 2.5 

0.459 3.0 

0.515 3.5 

 
The gradient of the graph of voltage against 

current is V/I, which is the resistance R. LINEST 

can be used to determine the gradient of the line 

of best fit and to estimate the uncertainty in this 

gradient.  If the LINEST function is applied to 

the two columns of values, it will display four 

values. 

1 The gradient of the line. 

2 The point at which the line intercepts the 

y-axis. 

3 The uncertainty in the gradient. 

4 The uncertainty in the intercept. 

 

To display the four values using LINEST, carry 

out the following steps: 

 

1 Select four empty cells below the table of 

results (or any convenient four cells).  

Make sure all four cells are highlighted.  

2 Navigate to the LINEST function.  There 

are a number of ways to do this.   

a) The simplest is to use the ‘formula 

builder’ window if it is available on 

your version of Excel. 

b) Alternatively, select Insert from the 

Tools bar, followed by Function. 

3 Either type in the following or use the 

formula builder to enter it. 

 

 

 

 

     =LINEST(B2:B9,A2:A9,TRUE,TRUE) 

The name of 

the function 

The cell labels 

for the y values. 

The cell labels 

for the x values. 

Setting this to TRUE forces 

the software to work out 

the y-axis intercept.   

Setting this to TRUE ensures 

the uncertainty in the gradient 

and intercept are displayed.   

Notice that the formula has to be typed in exactly 

as shown above. 

When this has been done, hold down CTRL and 

SHIFT and press ENTER.  (CMD +SHIFT on 

Apple computers).  With a bit of luck (!) four 

values will be displayed in the four highlighted 

cells. 

 

6.657005322 0.012521611 

0.171907825 0.053711224 

 

Taking into account significant figures, the 

resistance is 6.7 ± 0.2 Ω. 

 

Gradient                                         y-axis intercept 

Uncertainty in gradient           Uncertainty in y-axis intercept 


