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Abstract

US companies spend billions on point-of-sale promotions that have prompted decades

of research devoted to their rationalization as a response to dynamic habitual brand loyalty

(HBL) in consumer behaior. We propose a nonparametric test for HBL using a “dynamic

potential outcomes” model that resovles the classic identification challenge of decoupling

state dependence and unobserved heterogeneity. We then propose a semi-parametric test

for forward-looking behavior to assess whether consumers rationally plan their HBL. Case

studies of several large consumer packaged goods categories reveal non-trivial extent of HBL

in consumers’ brand choices. We also find semi-parametric evidence for forward-looking

consumer behavior and strongly reject the usual parametric static discrete-choice model in

favor of the dynamic discrete-choice model with a freely-varying discount factor. The long-

run price elasticities from a dynamic discrete-choice model are found to be considerably larger

in magnitude than those from a model with myopic choices, with substitution patterns often

more than 1000% higher in magnitude.
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1 Introduction

US companies spent $240 billion on advertising in 2020,1. Companies allocate about 75% of this

budget to sales promotions geared largely towards stealing market share from competitors,Sales

promotions typically consist of temporary discounts, coupons, in-store displays, loyalty programs

and newspaper feature ads geared towards influencing the consumer at the point-of-sale. up

significantly from the mid-20th century when promotions represented less than half of advertising

spending (Jones 1990). Tracking the growth in share-stealing promotions, a long literature in

quantitative marketing has studied the positive question of whether consumers form brand habits

and exhibit brand loyalty, mechansims that could rationalize promotional investments. Indeed,

since the advent of transaction-level shopping panels, the literature has documented high rates of

brand repeat-purchase within-consumer despite heterogeneous brand choices between consumers

(e.g., Brown, 1953; Cunningham, 1956; Kuehn, 1958). Of interest is whether the high repeat-

purchase rates reflect habitual brand loyalty (HBL): the treatment effect of past choices on current

choices (e.g., see Bass et al., 1984 for a survey). HBL is typically believed to arise from psychological

switching costs (e.g., Klemperer, 1995; Farrell and Klemperer, 2007; Dubé et al., 2010) that can

generate substantial barriers to entry into consumer goods industries (Bain, 1956). HBL may also

account for some of the $235 billion in estimated annual U.S. intangible marketing capital (Corrado

et al., 2005). Furthermore, HBL is one of the leading justifications for potential ROI from the

$244.7 billion spent on sales promotion for consumer goods at the point-of-sale.2 However, the

extant empirical literature has generated mixed results for HBL with inconclusive evidence from

under-powered, non-parametric approaches (e.g., Frank, 1962; Massy, 1966; Bass et al., 1984) and

parametric evidence based on random utility models that rely on ad hoc parametric assumptions

(e.g., Keane, 1997; Seetharaman et al., 1999; Dubé et al., 2010).

We apply a novel approach proposed by Torgovitsky (2019) that re-casts HBL within a non-

parametric Dynamic Potential Outcomes (DPO) framework. The model relates observed choice

outcomes to potential outcomes that would have been observed had a past choice been exogenously

1Accessed from Statista on 3-6-2022 at https://www.statista.com/statistics/429036/advertising-expenditure-in-
north-america/: :text=The%20United%20States%20is%20the,billion%20U.S.%20dollars%20in%202020.

2These expenditures include temporary discounts and merchandizing and displays to promote the sale of a product
in a store. Numbers accessed at https://www.statista.com/statistics/987009/marketing-spending-us-category/ on March
3, 2022.
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assigned. HBL – the causal effect of past choices on current choices – exists if potential outcomes

would be different under different hypothetical past choices. The DPO notation also clarifies the

separation between brand loyalty and unobserved heterogeneity (e.g., Heckman, 1981; Heckman

and Singer, 1984; Honore and Kyriazidou, 2000; Honoré and Tamer, 2006; Torgovitsky, 2019;

Pakes et al., 2021) and is not vulnerable to the “initial conditions” problem (e.g., Heckman, 1981;

Simonov et al., 2020). The DPO also nests the canonical random utility model (RUM) as well as

its dynamic discrete-choice model (DDC) analog. As a result, the DPO approach enables us to

set-identify HBL using behavioral restrictions implied by random utility theory without literally

estimating a parametric RUM model.

We then extend this positive analysis to test for forward-looking behavior in the presence of

brand loyalty to assess whether consumers consciously plan their future brand loyalty. We show

that the standard DDC with HBL has built-in exclusion restrictions that satisfy the conditions in

Abbring and Daljord (2020) to identify the discount factor and the utility function jointly. We then

propose a semi-parametric minimum distance estimator for the discount factor. We also explore a

parametric dynamic-discrete-choice model of demand with HBL that includes the discount factor

as a freely-varying parameter. Our maximum likelihood estimator is formulated as a MPEC

problem ((Su and Judd, 2012; Dubé et al., 2012) that imposes Bellman’s equation as constraints.

We conduct several empirical case studies of CPG markets using the IRI Academic Data Set,

focusing on categories with well-established brands to minimize concerns about short-term sources

of state-dependence such as learning. The data combine household-level shopping panel data

and the point-of-sale marketing conditions for the stores in which the panelists shop. Using the

DPO framework, we find evidence for HBL in brand choices for several of the CPG categories

studied. The lower bounds on HBL for the leading brands in these categories are often found to be

well above zero. In particular, for several categories, we find that as much as 25% of the current

purchases of the top-selling brand is due to HBL. We also find several cases where over 25% of the

choice-persistence for the top-selling brand (i.e., repeat purchases) is due to HBL. Interestingly, our

upper bounds are also quite sharp with most categories exhibiting less than 50% HBL, suggesting

that this form of brand loyalty may not be as pervasive as would be implied in parametric choice

models.

We also find strong evidence of consumer patience, with the mean discount factor in many
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categories close to the value implied by the real rate of interest. These results confirm that the

expected future value helps fit the moments implied by our exclusion restriction, suggesting that

consumers consciously plan their future. Nested and non-nested tests reject the standard, myopic

random-utility model of choice in favor of the dynamic model.

Our findings have important normative implications for pricing and marketing. In particular,

we find considerably larger equilibrium elasticities using a DDC with brand loyalty and a freely-

varying discount factor parameter versus a static RUM with brand loyalty and myopic behavior.

The cross-price elasticities of demand are often found to be over 1000% higher in the DDC,

implying considerably more competition and susbstitution once forward-looking behavior is accounted

for. These results echo the findings of Hendel and Nevo (2006)) who also find large differences

between the elasticities from the myopic and forward-looking choice model; although we find a

systematic downward bias in price-sensitivity when the myopic choice model with HBL is used.

In addition, we test the assumption of myopia and estimate a discount factor, as opposed imposing

forward-looking subject to a deterministically-known discount factor.

Our work contributes to the broader economic literature estimating state-dependent versions

of the static RUM to test for and measure switching costs in the healthcare industry (e.g., Handel

(2013),Polyakova (2016). The DPO formulation allows for a more agnostic test of the extent to

which consumer choices are driven by switching costs. To the best of our knowledge, this literature

assumes myopic behavior. We see high potential value to the application of our semi-parametric

estimator of the discount factor to test for rational forward-looking consumer behavior in the

choice of healthcare plans and whether consumers are conscious of the long-term implications

of their choices. More generally, the test for forward-looking behavior also contributes to the

small, but growing literature studying the underlying mechanisms governing HBL (e.g., Farrell

and Klemperer, 2007; Dubé et al., 2010; Gordon and Sun, 2015).

Our approach is most closely related to the recent study of switching costs by Pakes et al.

(2021), who propose a moment inequalities estimator that generates semi-parametric bounds on a

linear HBL parameter. In contrast, our DPO evidence for HBL is fully non-parametric, making it

robust to a broad class of parametric choice-specific index function and to the underlying consumer

choice behavior (e.g., it nests dynamic discrete-choice as well as boundedly-rational forms of

behavior). It is unclear whether the approach in Pakes et al. (2021) could be adapted to the case of
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dynamic discrete-choice, with bounds on the consumer discount factor.

Our work is also related to an older literature testing for HBL using statistical tests applied only

to within-panelist variation, such as the non-parametric binomial runs test and the parametric t-test

for higher-order, Markovian choice outcomes (e.g., Frank, 1962; Massy, 1966; Bass et al., 1984).

The DPO approach is more agnostic as it only imposes restrictions on the potential outcomes

path rather than imposing restrictions on the actual probability distribution governing the observed

choice outcomes. For instance, a binomial runs test uses a stationary binomial process as the null

model. As a result, the DPO approach is also more robust to the potential for latent marketing

variables, such as prices and advertising, that may also affect choices. In addition, the DPO

formulation has more statistical power in typically short-duration shopping panels because it allows

cross-sectional pooling of households in addition to using the within-household variation. Finally,

the DPO model bounds the extent of HBL in the population rather than just testing for incidence

of higher-order choice behavior.

The rest of the paper is organized as follows. Section 2 defines the canonical discrete-choice

formulation of brand purchase behavior. Section 3 discusses the DPO model and the empirical

bounds on HBL, along with a set of identifying assumptions to sharpen the bounds. Section 4

derives moments from the DDC to identify and estimate the discount factor. Section 5 describes

our empirical case studies and results, with policy implications discussed in section 6. We conclude

in section 7.

2 Habitual Brand Loyalty and the Canonical Random Utility

Model

We start by presenting the canonical, discrete-choice random utility model with unit demand

(RUM) and habitual brand loyalty (HBL). Each time period t = 1, ...,T , a consumer makes a

discrete purchase decision dt ∈ {0,1, . . . ,J} ≡D where D is a choice set containing a no-purchase

alternative, j = 0, and j = 1, ...,J brands.

A consumer in state s ∈S faces choice-specific utility is u j(st)+ ε jt , ∀ j ∈D where we make

the conventional normalization, uJ+1(st) = 0 and where εt ≡ (ε0t , ...,εJt)
′ ∼ i.i.d. Fε(ε) is a (Jx1)
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vector of random utility disturbances. We assume Fε(ε) is the Type-I Extreme value distribution.

The state vector st = (pt , `t) contains the vector of current prices, pt ≡ (p1t , ..., pJt), and the

consumer’s current loyalty state, `t ∈ {1, . . . ,J} ≡ D−0, reflecting her brand choice history. The

consumer cannot be loyal to non-purchase, j = 0. We assume the consumer’s loyalty state evolves

according to a controlled Markov process with transition probabilities Pr(`t+1 = k|`t ,dt),∀k ∈D−0

where dt ∈ D is the period-t purchase decision. We assume that pt evolves according to an

exogenous Markov process with discrete support, P . The state space S =P×D−0 is, therefore,

discrete with L support points. We denote the consumer’s beliefs about the evolution of the state as

the controlled Markov transition distribution Fdt (st)= [Pr(st+1 = s1|st ,dt), . . . ,Pr(st+1 = sL|st ,dt)].

The ex-ante value function associated with the consumer’s purchase decision problem is

v(st) = Eε

[
max
j∈D

{
v j (s)+ ε j

}]
(2.1)

where the choice-specific value functions are defined as the solutions to

v j (s) = u j(st)+βF j(s) ln
{

∑
k∈D

exp(vk)

}
, ∀ j ∈D (2.2)

where β ∈ (0,1) is a discount factor, and v j = [v j(s1), . . . ,v j(sL)]
′ is an L× 1 vector of values

from choosing brand j in each of the L states. For notational convenience, we can re-write the

choice-specific value functions in (2.2) in the following matrix form:

v j (s) = u j(st)+βF j(s)(m+v0) ,

where v0 = [v0(s1), . . . ,v0(sL)]
′ and m = [− ln(σ0(s1)), . . . ,− ln(σ0(sL))]

′ are L×1 vectors. This

is the classic dynamic-discrete-choice model (DDC) (e.g., Rust (1987)).

The consumer’s utility-maximizing choice probabilities in state s are:

σ j (s) =
exp
(
v j (s)

)
∑

k∈D
exp(vk (s))

, ∀ j ∈D . (2.3)
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The extant literature typically tests for HBL with variations of the following hypothesis:

H0 : HBL j ≡ v j(p, `= j)− v j(p, ` 6= j)> 0, ∀ j ∈D−0.

The alternative hypotheses consist of variety-seeking (HBL < 0) and no state-dependence (HBL =

0).

3 The Dynamic Potential Outcomes Model

We use the non-parametric, Dynamic Potential Outcomes model (DPO) (Torgovitsky, 2019) to

reformulate HBL as the causal effect of past choices on current choices. Our discussion and

notation follow Torgovitsky (2019) with one important distinction: we extend the DPO to the

multinomial brand-choice context. The DPO nests the RUM with HBL from Section 2 without

requiring any parametric assumptions on preferences or the discount function. Furthermore, the

DPO model set identifies HBL in brand purchases using mild, economically-motivated identifying

assumptions, such as stationarity and monotonicity, that are implied by the RUM.

3.1 Model

A consumer i makes observed brand-choice decisions Yit ∈J in time periods t = 1, ...,T . We

exclude the no-purchase alternative from this discussion. To capture the state-dependent effect

of brand loyalty, we assume the consumer receives the treatment Yi(t−1) in period t so that brand

loyalty is defined as the causal effect of last period’s brand-choice on the current period’s brand

choice outcome. Each period t, there exists a set of unobserved potential outcomes, Uit(1), ...,Uit(J)∈

J , corresponding to the brand choices that would have occurred under each of the loyalty states

Yi(t−1) ∈J .3

The observed brand-choice outcomes, Yi ≡ (Yi0,Yi1, ...,YiT ) ∈ Y ≡ {1, ...,J}T are related to

potential outcomes Ui(1) ≡ (Ui1(1), ...,UiT (1)), ..., Ui(J) ≡ (Ui1(J), ...,UiT (J)) through the DPO

3This first-order structure of loyalty does not impose a temporal structure on the potential outcomes, such as a
first-order Markov chain. It would also be straightforward to redefine the potential outcomes over sequences of past
choices to allow for richer forms of loyalty.
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model

Yit =
J

∑
j=1
1[Yi(t−1) = j]Uit(y), ∀t ≥ 1 (3.1)

where the initial condition Yi0 is observed but not modeled, avoiding the initial conditions problem

Heckman (1981); Honoré and Tamer (2006).

In contrast with past research that defines HBL through the observed outcomes, Yi, the DPO

defines HBL through the unobserved potential outcomes Ui. The DPO allows for state dependence

through the probability that different loyalty states cause different potential outcomes. With no

further restrictions, the DPO exhibits HBL when we observe positive state-dependence for a brand

j: Uit( j) = j, Uit(k) 6= j, j 6= k ∈J . The DPO exhibits variety-seeking when we observe negative

state-dependence for a brand j: Uit( j) 6= j, Uit(k) = j, j 6= k ∈J . The loyalty state has no causal

effect in the DPO when we observe the same potential outcomes for a brand j in different loyalty

states: Uit( j) =Uit(k), j 6= k ∈J , such as when brand choice reflects (persistent) tastes.

A classic challenge in the literature on state-dependence in choices is the separate identification

of state-dependence and heterogeneity Frank (1962); Heckman (1981); Keane (1997); Dubé et al.

(2010). The DPO also captures unobserved heterogeneity by allowing variation in the potential

outcomes (Uit(1), ...,Uit(J)) in the population. To illustrate, consider a two-period, binary choice

example in which brand 1 is repeatedly purchased: Yi =(Yi0,Yi1)= (1,1), where Yit ∈{0,1} for t =

0,1. As illustrated in Figure 1, any realization of potential outcomes with Ui1(1) = 1 can generate

the choice sequence Yi. Therefore, the DPO could explain Yi as preferences (i.e., Ui1(0) =

Ui1(1) = 1) or as HBL (i.e., Ui1(0) = 0, and Ui1(1) = 1).

3.2 The DPO Model Nests the Canonical Random Utility Model

The DPO nests the static and dynamic versions of the RUM from section 2. In the canonical RUM,

the potential outcomes in any given state s are the choices generated by utility maximization

Uit(y) = arg max
k∈J
{vk(y)+ εkt}, ∀y ∈J (3.2)
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Yi1 1 1 1 1( )Ui1(0) 1 0 1 0

Ui1(1) 1 ︸ ︷︷ ︸
state dep

1 0 0

The columns in black are the potential outcomes that could generate observed choices Yi = (1,1) through
the recursive relationship (3.1). The columns in gray are those potential outcomes that could not generate
observed choices. The squared cells are potential outcomes in the observed loyalty state, while the rest are
unobserved potential outcomes.

Figure 1: Decomposing observed choice persistence

where the treatment is Yt−1 ∈J . As before, we can relate the observed outcomes Yi to the

potential outcomes as follows:

Yit = ∑
y∈J

1[Yi(t−1) = y]Uit(y). (3.3)

Recall that the RUM in section 2 includes a no-purchase alternative, j = 0, to which consumers

do not form any loyalty. For the empirical DPO analysis, we condition on purchase (i.e., exclude

non-purchase) to reduce the computational burden. However, it is straightforward to reformulate

3.3 to accommodate no-purchase in our DDC analysis as follows:

Uit(y) = arg max
k∈J
{vk(y)+ εkt}, ∀y ∈D

Yit = ∑
y∈J

1[Yi(t−1) = y]Uit(y)+1[Yi(t−1) = 0]Uit(`t−1)

`t = 1[Yi(t−1) = 0]`t−1 +1[Yi(t−1) 6= 0]Yi(t−1) (3.4)

where y is a counterfactual loyalty state, and `t is the realized loyalty state.

While the DPO model is agnostic about the parametric form of the potential outcomes function

Uit(·), the RUM model imposes several parametric restrictions including utility maximization

behavior, the additive separability of the random utility disturbances, ε , and a parametric distributional

assumption for the utility disturbances, Fε(ε). In the case of the DDC, the analysis further assumes
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geometric discounting and knowledge of the consumers’ beliefs about the state transition process.

3.3 Identification of HBL in the DPO model

The empirical goal consists of testing for a causal effect of past brand choice on current decision-

making. We therefore define our target parameter as follows:

HBLt(P) = (HBL1t(P), ...,HBLJt(P)), (3.5)

where

HBL jt(P) =PP[∃k 6= j ∈J s.t. Uit( j) = j,Uit(k) 6= j] (3.6)

where P denotes the probability mass function over the possible potential outcome paths, Ui ≡

(Yi0,Ui(1), ...,Ui(J)), with support U ≡ {1, ..,J}JT+1. Formally, HBL jt measures the population

probability on date t that there exists at least one brand k 6= j such that a consumer who would

choose brand j if loyal to it would choose something else if she had instead been loyal to k.

Measuring HBL under the DPO model (3.1) differs conceptually from the more familiar RUM

framework, where HBL consists of a preference parameter. Our model primitive now consists

of the probability mass function P, where P(µ) represents the probability of observing potential

outcome path µ in the consumer population. Let P denote the set of all probability mass functions

P where

P : U → [0,1] s.t. ∑
µ∈U

P(µ) = 1. (3.7)

The parameter space, P†, consists of the subset of P that satisfies the researcher’s prior

assumptions:

P† = {P ∈P : ρ(P)≥ 0}, (3.8)

where ρ : P →R
dρ is a function representing assumptions on P, and the inequality is interpreted

component-wise. ρ(P) denotes addtional prior restrictions, discussed below in more detail, that
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we will impose restrictions to improve identification. In the empirical application of the DPO, we

will also need to address the fact that the dimension of U increases exponentially in J and T .

We can now define the identified set, P?, as the observationally equivalent subset of the

parameter space, P†, for which the DPO can rationalize the observed brand choices. LetP[Yi = y]

denote the observed probability of Yi. Then the observational equivalence requires that, for every

y≡ (y0,y1, ..,yT ) ∈ Y ,

P[Yi = y] =PP[Yi0 = y0,Uit(yt−1) = yt all t ≥ 1] (3.9)

= ∑
µ∈Uoeq(y)

P(µ),

where Uoeq is the set of all potential outcome sequences that can generate the observed choices

y = (y0,y1, ..,yT ) through µ0 = y0 and µt(yt−1) = yt for all t ≥ 1.

We now turn to the testing of HBL. Suppose we define a target parameter θ : P → R
dθ as a

low dimensional function of P. The researcher is interested in the identified set for θ , denoted by

Θ? ≡ {θ(P) : P ∈P?}. An example of the target parameter θ is HBL jt(P) defined above. Recall

that we only observe the potential outcome in the observed state, Uit(Yi(t−1)), so that {Uit(y)}y∈J

is unobserved. This is the heart of the identification problem and the following proposition clarifies

that the HBL jt parameters (3.6) are not point-identified but are set-identified. The proposition is

an extension of Torgovitsky (2019)’s Proposition 1 to the multinomial context.

Proposition 1. Suppose that P† = P . If θ = HBL jt(P), then

Θ
? =
[
0,P[Yi(t−1) = j,Yit = j]+P[Yi(t−1) 6= j]

]
when |J | ≥ 3,

Θ
? =
[
0,P[Yi(t−1) = j,Yit = j]+P[Yi(t−1) 6= j,Yit 6= j]

]
when |J |= 2. (3.10)

See Appendix A.7 for the proof. Proposition 1 confirms that in the absence of any prior

restrictions (i.e., P† = P), the data alone cannot reject pure heterogeneity even though it can

bound the extent of state dependence from above. The upper bounds also show us how variation in

choices identify the bounds. If consumers never switched brands, then the upper bound for HBL

would be 100% and there would be no empirical content to the assumption free bounds.
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Clearly we will need to impose more restrictions to sharpen the bounds in Proposition 1, as

we discuss below in section 3.3.1. First, we present a simple pedagocial example to illustrate the

identification result.

3.3.1 A Pedagogical Example

To illustrate the identification of HBL, consider the following two-consumer, three-period example.

Assume there are two consumers, i = 1,2, in the population and three time periods t = 0,1,2.

Suppose we observe the choice sequences Y1 = (0,0,1) and Y2 = (0,1,1) for consumers 1 and 2,

respectively. The corresponding observed choice probabilities are

P[Yi = (0,0,1)] = 1/2

P[Yi = (0,1,1)] = 1/2

Let µ = (µ0,(µ1(0),µ1(1)),(µ2(0),µ2(1))) denote a potential outcomes path. The set U =

{0,1}2∗2+1 contains all 32 possible potential outcomes paths. We denote the set of observationally

equivalent potential outcome paths that rationalize the data as (0,(0, ·),(1, ·)) and (0,(0, ·),(1, ·)),

where

P[µ ∈ (0,(0, ·),(1, ·))] =P[Yi = (0,0,1)] =
1
2

(3.11)

P[µ ∈ (0,(1, ·),(·,1))] =P[Yi = (0,1,1)] =
1
2

(3.12)

Only 8 of the 32 potential outcome paths can be consistent with the data. However, we cannot

fully rule out pure heterogeneity since, for example, µ = (0,(0,1),(1,1)) is consistent with Y1 and

its potential outcomes in period t = 2 implies pure heterogeneity.
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Therefore, without additional restrictions, the identified set corresponding to our data is

P?
oeq = {P : ∑

µ∈U
P(µ) = 1, P(µ) ∈ [0,1]

P[µ ∈ (0,(0, ·),(1, ·))] =P[Yi = (0,0,1)] =
1
2

P[µ ∈ (0,(1, ·),(·,1))] =P[Yi = (0,1,1)] =
1
2
}

where the first row is required for P to be a probability mass function on U , and the rest are

required for observational equivalence.

We can now define the target parameters HBL(P) = (HBL1(P),HBL2(P)). For period 1, we

have

HBL1(P) =PP[µ ∈ (·,(0,1),(·, ·))]

= P[µ = (0,(0,1),(1,0))]+P[µ = (0,(0,1),(1,1))] (3.13)

where the second equality follows from the fact that only two of the 8 potential outomce paths

consistent with Y1 and Y2 exhibit HBL in period 1. With no additional restrictions, we can bound

HBL1(P) within the closed interval [0,1/2]. To see this result, the two potential outcome paths in

HBL1 are consistent with Y1 and so are bounded by (3.11),

0≤ P[µ = (0,(0,1),(1,0))]+P[µ = (0,(0,1),(1,1))]≤P[Yi = (0,0,1)] = 1/2

Similarly HBL2 is also bounded within [0,1/2].4

We’ve shown that the identified sets for habitual brand loyalty in the data are ˆHBL1 = ˆHBL2 =

[0,1/2]. The upper bounds of HBLt depend on the extent of serial dependence in choices: consumer

1’s repeated choice of 0 in t = 0,1 bounds HBL1 from above and consumer 2’s repeated choice

of 1 in t = 1,2 bounds HBL2 from above. However, the data alone fail to reject “no HBL” in the

population in any period.

4HBL2 = P[µ = (0,(1,0),(0,1))]+P[µ = (0,(1,1),(0,1))]; 0≤ HBL2 ≤P[Yi = (0,1,1)] = 1/2.
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3.4 Identifying Assumptions

We now follow Torgovitsky (2019) and propose additional restrictions to sharpen the bounds on the

identified sets for HBL. As discussed earlier, the RUM imposes several parametric restrictions that

ensure the point identification of the model parameters. However, these parametric assumptions

may be unnecessary to test for HBL. We instead introduce three behaviorally-motivated identifying

assumptions implied by the RUM, including stationarity and monotonicity assumptions. The

assumptions can be added to the DPO model via the ρ function in (3.8) to sharpen bounds on

the HBL parameters.

3.4.1 Stationarity

We can use a stationarity assumption to pool the population distribution of potential outcomes from

different time periods. A simple form of stationarity is as follows:

Assumption ST: ∀µ ≡ (µ(1), ...,µ(J)) ∈ {1, ...,J}J,∀t, t ′ ≥ 1,

PP[Uit(1) = µ(1), ...,Uit(J) = µ(J)] =PP[Uit ′(1) = µ(1), ...,Uit ′(J) = µ(J)]

This assumption ensures the time-invariance of the joint distribution of potential outcomes (Uit(1), ...,Uit(J))

in the population.

Unlike the early stochastic brand choice literature (e.g., see the survey in Bass et al. (1984))

that imposed stationarity on the within-consumer observed outcomes Yit , the DPO model imposes

stationarity on the cross-sectional distribution of potential outcomes Uit . When stationarity is

imposed on potential outcomes, a sufficient condition for stationarity in observed outcomes is

that there is no state dependence in the data generating process. Therefore, assuming Stationarity

makes it possible to bound HBL away from 0 if we observe non-stationary choices.

Although the DPO model itself is agnostic about the mechanism of state dependence in brand

choices, imposing Stationarity assumes away mechanisms that generate non-stationary treatment

effect of past choices on current choices as the sole source of such state dependence. As an

example, Bayesian learning cannot be the only reason that brand choices exhibit state dependence

under Assumption ST, because its treatment effect of the past choice on the current choice depends
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on the number of signals sampled and hence is non-stationary.

The following proposition establishes that (ST) is implied by the standard RUMs with time-

invariant coefficients along with stationary covariates and utility shocks.

Proposition 2. Suppose that every P ∈P† is consistent with Uit(y) being generated through (3.3)

by an RUM model. If the distributions of prices, pt , and random utility shocks, εt , are stationary,

then Assumption ST is satisfied.

Proof. See Appendix A.1.

To illustrate the role of the Stationarity restriction, we revisit the two-consumer, three-period

example in Section 3.3.1, where we observe outcomes Y1 = (0,0,1) and Y2 = (0,1,1). Recall

that eight of the 32 possible potential outcome paths are consistent with data. The observational

equivalence condition requires that P[Yi = (0,0,1)] = P[µ ∈ (0,(0, ·),(1, ·))] = 1/2 and P[Yi =

(0,1,1)] = P[µ ∈ (0,(1, ·),(·,1))] = 1/2.

Assumption ST imposes the following additional restrictions,

P[µ ∈ (·,(0,0),(·, ·))] = P[µ ∈ (·,(·, ·),(0,0))] (3.14)

P[µ ∈ (·,(0,1),(·, ·))] = P[µ ∈ (·,(·, ·),(0,1))] (3.15)

P[µ ∈ (·,(1,0),(·, ·))] = P[µ ∈ (·,(·, ·),(1,0))] (3.16)

P[µ ∈ (·,(1,1),(·, ·))] = P[µ ∈ (·,(·, ·),(1,1))] (3.17)

While Assumption ST would reject the data if we only observed one of the two consumers, it

adds identifying information in our panel that pools consumers. Starting with the right-hand side

of (3.14), we have P[µ ∈ (·,(·, ·),(0,0))] = 0 because this potential outcomes pattern is inconsitent

with either Y1 or Y2. It follows that on the left-hand-side, which is only consistent with Y1, we have

P[µ ∈ (·,(0,0),(·, ·))] = 0. Therefore, under Assumption ST, Y1 can only rationalized with µ ∈

(0,(0,1),(1, ·)), giving us: P[Yi = (0,0,1)] = P[µ ∈ (0,(0,1),(1, ·))] = 1/2. In sum, Assumption

ST rules out heterogeneity for Y1 in period t = 1.

Turning to (3.15), the left-hand-side potential outcomes pattern (·,(0,1),(·, ·)) is only consistent

with Y1 and so P[µ ∈ (·,(0,1),(·, ·))] = P[µ ∈ (0,(0,1),(1, ·))] = P[Yi = (0,0,1)] = 1/2, where

the first equality comes from observational equivalence and the second equality comes from the
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previous step, where Assumption ST ruled out heterogeneity for Y1 in period t = 1. By Assumption

ST, the right-hand-side P[µ ∈ (·,(·, ·),(0,1))] = 1/2. Since the right-hand-side is only consistent

with Y2, it implies that P[(0,(1, ·),(0,1))]= 1/2 and so Y2 is only rationalized with µ ∈ (0,(1, ·),(0,1)).

Therefore, Assumption ST also rules out heterogeneity for Y2 in period t = 2.

Restrictions (3.16) and (3.17), together with (3.14), (3.15), and observational equivalence,

imply that P[µ ∈ (0,(0,1),(1, ũ))] = P[µ ∈ (0,(1, ũ),(0,1))] for ũ = 0,1. The combination of

the data and Assumption ST therefore generate the identified set

P?
ST = {P : ∑

µ∈U
P(µ) = 1, P(µ) ∈ [0,1]

P[µ ∈ (0,(0,1),(1, ·))] =P[Yi = (0,0,1)] =
1
2

P[µ ∈ (0,(1, ·),(0,1))] =P[Yi = (0,1,1)] =
1
2

P[µ = (0,(1, ũ),(0,1))] = P[µ = (0,(0,1),(1, ũ))] for = 0,1}

Furthermore, we have HBL1(P)=P[µ ∈ (·,(0,1),(·, ·))]=P[µ ∈ (·,(0,1),(1, ·))]= 1/2 and HBL2(P)=

P[µ ∈ (·,(·, ·),(0,1))] =P[µ ∈ (·,(1, ·)),(0,1)] = 1/2 for all P∈P?
ST . Therefore, ˆHBL1 and ˆHBL2

are point identified under stationarity in this example and 50% of the population exhibits HBL in

each period.

Intuitively, Assumption ST sharpens the identified set by restricting the flexibility of population

heterogeneity in the data, thereby bounding the degree of HBL from below. In the example above,

Assumption ST excluded heterogeneity of the form (·,(0,0),(·, ·)) in t = 1 as well, effectively

bounding the HBL parameters above 0.

3.4.2 Monotone Treatment Selection (MTS)

Another potential restriction comes from the assumption that self-selection into loyalty for a brand

j (e.g., Yi(t−1) = j) contains identifying information about a consumer’s latent preference for j. We

use Torgovitsky (2019)’s Monotonte Treatment Selection restriction:
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Assumption MTS: For ∀y, ỹ ∈ {1, ...,J} and all t ≥ 2 s.t. P[Yi(t−1) = j|Yi(t−2) = ỹ] ∈ (0,1),

PP[Uit(y) = j|Yi(t−1) = j,Yi(t−2) = ỹ]≥PP[Uit(y) = j|Yi(t−1) 6= j,Yi(t−2) = ỹ] (3.18)

Assumption MTS implies that a consumer who purchased brand j in period t−1 is more likely to

choose brand j in all potential loyalty state during period t than some other consumer who does not

choose j in period t−1. The additional conditioning on Yi(t−2) ensures that Yi(t−1) are comparable.

In other words, one could interpret the MTS assumption as saying consumers who self selected

into loyalty have a higher latent propensity to purchase the same brand in the following period than

those who didn’t select into loyalty. In the RUM context, such latent propensity to purchase may

come from a persistent unobserved preference for the brand, or from positively serial correlated

utility shocks, as an example.

The following proposition establishes that weakly positive serial-dependence in the utility

shocks is sufficient for the potential ouctomes to satisfy MTS under the static version of the RUM

in Section 2 (i.e., with consumer discount factor β = 0) when choice-specific utility takes the

canonical form u j(p, l) = γ j−α p j +λ I{l= j}, prices are time-invariant and the choice set contains

two brands (i.e. |J |= 2).

Proposition 3. Suppose that every P ∈P† is consistent with Uit(y) being generated through the

RUM (3.3) with J = {1,2}, u j(p, l) = γ j−α p j +λ I{l= j}, and time invariant prices pt = pt ′ for

all t, t ′. If the utility shocks ε jt and ε j(t+1) have weakly positive covariance for all j, t, ε jt ⊥ εkt for

all j,k, t, and εt ⊥ p for all t, then Assumption MTS is satisfied.

Proof. See Appendix A.1.

Proposition 4. Suppose that every P ∈P† is consistent with Uit(y) being generated through the

RUM (3.3) with time invariant prices pt = p,∀t. If the choice-specific probabilities σ j(P,y) and

σ j(P, ỹ) have weakly positive covariance for all y, ỹ ∈J then Assumption MTS is satisfied.

Proof. See Appendix A.1.

We have not worked out the extension of Proposition 3 to the version of the DDC that includes

potentially serially-dependent covariates, such as prices. In that case, MTS in the RUM would also

require restrictions over the distribution of prices.
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To illustrate the role of Assumption MTS, we again revisit the two-consumer, three-period

example in Section 3.3.1, where the observational equivalence condition alone gives us: ˆHBL2 =

P[µ ∈ (·,(·, ·),(0,1))] = P[µ ∈ (0,(1, ·),(0,1))] ≤ P[Yi = (0,1,1)] = 1/2. Assumption MTS

imposes the following additional restriction:

P[Ui2(0) = 1|Yi1 = 1,Yi0 = 0]≥ P[Ui2(0) = 1|Yi1 = 0,Yi0 = 0] (3.19)

The right hand side of (3.19) is consistent with Y1 and occurs with probability 1: P[Yi2 = 1|Yi1 =

0,Yi0 = 0] = 1. The inequality implies that the left hand side must give P[Ui2(0) = 1|Yi1 =

1,Yi0 = 0] = 1. Since the conditioning event on the left-hand-side can only be consistent with

Y2, Assumption MTS rules out HBL for consumer 2 in t = 2: ˆHBL2 = P[µ ∈ (0,(1, ·),(0,1))] = 0.

Therefore, Assumption MTS reduces the upper bound of ˆHBL2 from 1/2 to 0.

Intuitively, Assumption MTS sharpens the identified set by restricting the sources of serial-

dependence in the data which can be confounded with HBL. The restriction bounds the degree of

HBL from above.

3.4.3 Monotone Treatment Response

A natural candidate restriction is directly on sign of the state dependence in brand choices. We

could explicitly rule out negative state dependence, i.e. variety-seeking, through the following

restriction:

Assumption MTR: For ∀k 6= j and for all t,

PP[1{Uit( j) = j} ≥ 1{Uit(k) = j}] = 1 (3.20)

This assumption captures the idea that being loyal to a brand weakly improves the utility of that

brand more than the utility of any other brand. Assumption MTR imposes uniformity over the

evolution of choices in the sense that a change in the loyalty state from k to j should increase

everyone’s propensity to choose j.

The following proposition establishes a sufficient condition for the RUM in section 2 to imply

MTR. In the usual linear-index version of the RUM, Assumption MTR holds if the loyalty coefficient
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is non-negative. More generally, this assumption is implied by a separable additive utility function

where a change in state from k to j increases the utility of option j relative to all other options

(Heckman and Vytlacil, 2007; Heckman et al., 2008; Lee and Salanié, 2018; Irace, 2018).

Proposition 5. Suppose that every P ∈P† is consistent with Uit(y) being generated through (3.3)

by an RUM model. If u j(p, l = j)−u j(p, l = k)≥ 0 and ul(p, l = j)−ul(p, l = k)≤ 0 at all p for

all k, l 6= j ∈J , then Assumption MTR is satisfied.

Proof. See Appendix A.1.

While MTR may not always sharpen the bounds of the HBL parameters, it reduces the computational

burden by eliminating potential outcomes paths. In the two-consumer, three-period example of

section 3.3.1, Assumption MTR reduces the number of adimissible potential outcome paths from

8 to 4, so that Y1 is only consistent with µ ∈ (0,(0, ·),(1,1)) and Y2 is only consistent with

µ ∈ (0,(1,1),(·,1)).

3.4.4 Omitted Marketing Variables

One advantage of the DPO model (3.1) is that it does not impose any structure on the manner

in which marketing variables, such as prices or advertising affect choices. However, a potential

concern is that the presence of unmodeled, demand-shifting marketing variables might violate

some of our identifying assumptions. For instance, if prices are non-stationary, then to the extent

they change demand, the potential outcomes may also be non-stationary, violating our ST restriction.

Incorrectly imposing ST could spuriously identify a non-zero lower bound on the HBL parameter.5

Therefore, we must implicitly assume that prices (and other marketing variables) and the resulting

potential outcomes are stationary so that our model is not mis-specified under ST. For instance,

ST would not be violated if unmodeled prices follow a Markov process.6 The implications of

unmodeled marketing variables for MTS are more complicated. Alternatively, one could in principle

re-define the HBL parameter to be conditional on prices (or other marketing variables).

5Recall that non-stationarity in choices identifies HBL under the ST restriction.
6Eichenbaum, Jaimovich and Rebelo (2011) find that CPG prices follow Markov process whereby prices alternate

between regular and discount prices, and Dekimpe, Hanssens and Silva-Risso (2011) find that CPG prices follow a
linear, first-order Markov process.
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Concerns about omitted marketing variables and spurious HBL are not unique to the DPO

framework. In the stochastic brand choice literature, one needs to make the much stronger assumption

that marketing variables do not shift the choice probabilities under the null multinomial process

used for the runs tests and t-tests. Under the DPO, we only need to ensure that omitted marketing

variables do not invalidating our identifying restrictions on the potential outcomes distribution.

3.5 Computing the Identified Set of HBL Parameters

Every probability mass function P in the identified set P? produces an HBL instance that is

consistent with data and prior assumptions (ρ(P)≥ 0, including Assumptions ST, MTS and MTR).

To get the identified set of ˆHBL, we use the linear programming approach from Torgovitsky (2019).

After extending the objective functions and contraints to the multinomial choice context as we

discussed above, we can compute the identified set of ˆHBL as a closed interval Θ? ≡ [θ ?
lb,θ

?
ub] by

solving two optimization problems,

θ
?
lb ≡ min

{P(µ)∈[0,1]:µ∈U }
θ(P)

s.t. ρ(P)≥ 0, (3.7), and (3.9) (3.21)

θ
?
ub ≡ max

{P(µ)∈[0,1]:µ∈U }
θ(P)

s.t. ρ(P)≥ 0, (3.7), and (3.9) (3.22)

4 A Test of Forward Looking Behavior in Brand Loyalty

The DPO nests a broad class of RUMs, including myopic consumers who fully discount the future

(β = 0) and passively respond to their brand habits, and forward-looking consumers (β > 0)

who consciously plan their future brand loyalty. The extant empirical literature using RUMs to

study habitual brand loyalty typically assumes myopic consumer behavior.7 We propose additional

parametric restrictions under which the discount factor, β , can be jointly identified with the consumer’s

deterministic flow utilities, u j(s),∀ j∈D . Our identification results are constructive and immediately

7See for instance Guadagni and Little (1983), Keane (1997), Seetharaman et al. (1999), and Dubé et al. (2010). One
exception is Chintagunta et al. (2001) who estimate the reduced-form of the DDC in 2.3 without separately identifying
β and preferences.
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suggest a semi-parametric minimum-distance estimator of the discount factor and test for forward-

looking.

4.1 Identification of the Discount Factor

The extant literature has established that the discount factor β is not identified in discrete-choice

RUMs without additional restrictions (Rust, 1994; Magnac and Thesmar, 2002). We now show

that the DDC in section 2 has built-in exclusion restrictions of the form discussed in (Abbring and

Daljord, 2020) that resolve this non-identification problem.

Following Hotz and Miller (1993), the inversion of (2.2) identifies the choice-specific value

contrasts:

ln
(

σ j(s)
σ0(s)

)
= v j(s)− v0(s) (4.1)

= u j(s)+β [F j(s)−F0(s)][I−βF0]
−1m

where F j =
[
F0 (s1)

′ , ...,F0 (sL)
′]′ are the consumer’s beliefs over future states conditional on

choice j ∈D . However, (4.1) reveals that even if beliefs F are observed, an additional moment is

needed to disentangle the utilities, u(s) j, and the discount factor, β .

In appendix A.2, we show that the canonical differentiated-products, discrete-choice RUM has

a built-in set of exclusion restrictions due to the fact that the current-period utility only depends on

the price of the chosen alternative, p j, and not on the prices of rival products, p− j:

u j
(

p j,p− j, `
)
= u j

(
p j, ., `

)
.

Let S id denote the set of pairs of states that generate excluded rival price variation:

S id =
{{

s,s′
}
∈S 2 : p j = p′j, p−j 6= p′−j, and `= `′ = l, l 6= j, for j ∈D−0

}
. (4.2)

If we assume that prices are exogenous, E(ε jt |p jt) = 0, we can construct a new set of moment
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conditions by differencing the Hotz-Miller conditions (4.1) for each pair of states (s,s′) ∈S id:

ln
(

σ j(s)
σ0(s)

)
− ln

(
σ j(s′)
σ0(s′)

)
= β [F j(s)−F0(s)−F j(s′)+F0(s′)][I−βF0]

−1m. (4.3)

The following proposition, based on Theorem 1 in Abbring and Daljord (2020), characterizes

the identified set for β based on the moments (4.3).

Proposition 6. Suppose that we observe pairs of states as in (4.2) and that either the left hand side

of (4.3) is nonzero (that is, σ j(s)/σ0(s) 6= σ j(s′)/σ0(s′)) or [Fj(s)−F0(s)−Fj(s′)+F0(s′)][I−

βF0]
−1m 6= 0. Then the identified set of discount factors contains at most L elements.

Proof. See Abbring and Daljord (2020).

In practice, the rank condition in theorem 6 does not guarantee that β is point identified.

However, Abbring and Daljord (2020) conjecture that when multiple exclusion restrictions are

available, as in our empirical applications below, β will be point identified. More important,

conditional on β , we can point-identify the utilities from the Hotz-Miller conditions (4.1).

4.2 A Semi-Parametric Minimum Distance Estimator for the Discount Factor

We construct the empirical analog of the moments (4.3) for each observed pair (s′,s′′) ∈ Sid

g(β ) = ln
(

σa (s′)
σ0 (s′)

)
− ln

(
σa (s′′)
σ0 (s′′)

)
−β

[
Fa
(
s′
)
−F0

(
s′
)
−Fa

(
s′′
)
+F0

(
s′′
)]
[I−βF0]

−1 m.

(4.4)

We then define the miminum distance estimator

β
MD = argmin

β

g(β )′Wg(β ) (4.5)

where W is an (R) weight matrix and g(β ) is the (R× 1) vector of moments. Inference follows

directly from Newey and McFadden (1994).
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5 Empirical Application: CPG Demand

5.1 Data

We conduct a case study of demand for consumer brands in the CPG industry using the IRI

Academic Dataset.8 The data comprise a shopping panel for 15,079 households spanning 12 years

between 2001 and 2012. In addition, the data include weekly price and sales data at the UPC level

for chain grocery and drug stores in those markets. Our analysis focus on the period from 2004

to 2007, since this data period provides the largest sample with qualifying purchases and that a

longer period is more likely to contain non-stationary changes in the purchase environment that

may invalidate the stationarity assumption in the DPO model.

For our analysis, we select CPG product categories that have oligolisitic market structure, that

are not susceptible to stockpiling and addictive behavior, and with sufficient number of observations.

For each category, we focus on the top selling product form and package size, and construct

purchase panel for top 2-6 brands in terms of purchase incidences. Horizontally differentiated

brand variants are aggregated if their price correlation is high. Within each category, we retain

those households that satisfy minimal requirements for reporting, make in-category purchases only

at stores with complete price records for all brands in the choice set, only purchase one or less brand

from the choice set each week, and make at least three in-category purchases in the data period.

We keep all trips made by these households that took place in stores with a complete price record.

Outside option is defined as a trip without purchasing brands in the choice set.

After applying our screening criteria, we obtain panel data for the following 8 categories:

coffee, deodoreant, mayonnaise, margarine, peanut butter, spaghetti sauce, tooth brushes, and

yogurt. Table 1 provides summary statistics of each of the 8 estimation samples.

5.2 Evidence of Brand Loyalty

To implement the DPO model on brand choice data in CPG categories, we adopt several measures

to reduce the computational burden of the DPO problem. The dimensionality of the DPO problem

grows exponentially in both J and T , for there are JJT+1 variables each being a probability of a

8see Bronnenberg et al. (2008) and https://www.iriworldwide.com/en-us/solutions/academic-data-set
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category brands households trips purchases brands
coffee 5 870 139.7 8.7 MAXWELL Sm, FOLGERS Sm, FOLGERS Lg, PL Sm, MAXWELL Lg
deodorant 6 1143 197.6 5.1 MENNEN, OLDSPICE, DOVE, DEGREE, RIGHT, SECRET
mayonnaise 3 2109 173 7 HELLMANNS, PL, KRAFT
margarine 4 1241 166.5 11 SMARTBALANCE, ICBINB, SHEDDSCOUNTRYCROCK, PROMISE
peanut butter 4 4143 170.1 8.9 SKIPPY, JIF, PL, PETERPAN
spaghetti sauce 4 1899 185 11.5 RAGU, PREGO, FRANCESCORINALDI, HUNTS
toothbrushes 2 505 241.5 4.5 COLGATE, ORALB
yogurt 3 1457 168.4 13.3 YOPLAIT, DANNON, COLOMBO

This table summarizes the estimation samples drawn from the IRI Academic Dataset. The number of trips and number of purchases are computed

as cross-household means.

Table 1: Descriptive Statistics

potential outcomes path. For a modest size of problem with J = 3 and T = 4, there are more than

1.5 million variables and at least 241 constraints for observational equivalence. To control the size

of J, we drop no-purchases, create a multinomial-choice estimation sample with top two brands in

each category and consolidate the remainder brands in to a composite good (J = 3), as well as a

binary choice estimation sample with top one brand and consolidate the remainder brands (J = 2).

To control the size of T , we keep the last six purchases of each household for DPO estimation.

With the multinomial estimation sample, we further adopt a dimensionality reduction technique

introduced in Torgovitsky (2019) to construct shorter DPO models (ML=3) and use a collection

these shorter models to relate potential outcomes to observed brand choices.

In theory, one could also include time-varying covariates X , such as prices, into the DPO model

by modifying primitives P : U ×X . However, it will further exacerbate the dimensionality issue,

for that now we will have JJT+1×|X | variables to solve for. Therefore, we suppress prices in the

DPO model and focus on loyalty states only.

We first report the share of the consumer choice occasions that exhibit HBL for the most

popular brand. Table 2 reports the cross-time average HBL estimated from the multinomial-choice

estimation sample (J = 3), and Table 3 reports HBL bounds and confidence regions estimated

from a binary-choice estimation sample. The target parameter is HBL j ≡ 1
T ∑

T
t=1 HBL jt(P), where

j denotes the most popular brand in each category. We impose either no identifying assumptions,

or a set of assumptions including ST (1), MT S and MT R. The estimated bounds and the 95%

confidence regions are constructed using the procedure of Torgovitsky (2019) and Chernozhukov
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et al. (2015). Figure 2 and Figure 3 visualize the estimates.

For a marketer, the more interesting question may be to assess the extent to which its current

consumer share is due to HBL. So we also report HBL conditional on being a current purchaser

of the most popular brand, HBL|Yt = j. Table 4 and Figure 4 report the bounds for the cross-time

average of HBL|Yt = j. XXXX DISCUSSION XXXX

Finally, to decompose the persistence in brand choice for the most popular brand, we also

report HBL conditional on both currently choosing the most popular brand and also choosing

it the previous trip, HBL|Yt = jandYt−1 = j. Table 5 and Figure 5 report the bounds for the

cross-time average of HBL|Yt = jandYt−1 = j under several alternative sets of restrictions. XXXX

DISCUSSION XXXX

category brand ˆHBLlb ˆHBLub 95%CRlb 95%CRub
coffee MAXWELLS 0.070 0.395 0.029 0.489
deodorant MENNEN 0.071 0.513 0.000 0.617
mayonnaise HELLMANNS 0.042 0.579 0.023 0.671
margarine SMART BALANCE 0.037 0.574 0.000 0.706
peanut butter SKIPPY 0.056 0.485 0.046 0.535
spaghetti sauce RAGU 0.029 0.493 0.000 0.536
toothbrush COLGATE 0.162 0.242 0.053 0.423
yogurt YOPLAIT 0.038 0.526 0.000 0.603

This table summarizes the bounds on HBL using the estimation samples drawn from the IRI Academic Dataset. We report bounds for the

cross-time average value of HBL j where j is the top-selling brand in each category. Estimation is based on a multinomial DPO model with J = 3

(except for the toothbrush category where J = 2), T = 5 which stitches together sequences of length ML = 3 using the dimension-reduction

technique in Torgovitsky (2019). The choice sets consist of each of the top-two selling brands and a composite brand representing all other choice

alternatives. ˆHBLlb and ˆHBLub incidates the estimated bounds. 95%CRlb and 95%CRub indicate the 95% confidence region constructed using the

CNS method discussed in Torgovitsky (2019) and Chernozhukov et al. (2015), implemented using 30 bootstrap draws and a tuning parameter of

τn = 0.8.

Table 2: Habitual Brand Loyalty in IRI Data - Multinomial DPO
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Figure 2: Share of population with HBL - Multinomial DPO
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Figure 3: Share of population with HBL - Binary DPO
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Figure 4: Share of Current Buyers with HBL - Binary DPO
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category ˆHBLlb ˆHBLub 95%CRlb 95%CRub
coffee 0.165 0.275 0.000 0.346
deodorant 0.201 0.306 0.000 0.438
mayonnaise 0.063 0.358 0.008 0.484
margarine 0.057 0.485 0.000 0.594
peanut butter 0.108 0.261 0.032 0.326
spaghetti sauce 0.079 0.324 0.000 0.381
toothbrush 0.130 0.320 0.000 0.503
yogurt 0.107 0.373 0.000 0.456

This table summarizes the bounds on HBL using the estimation samples drawn from the IRI Academic Dataset. We report bounds for the

cross-time average value of HBL j where j is the top-selling brand in each category. Estimation is based on a binomial DPO model with J = 2 and

T = 5. The choice sets consist of the top-selling brand and a composite brand representing all other choice alternatives. ˆHBLlb and ˆHBLub incidate

the estimated bounds. 95%CRlb and 95%CRub indicate the 95% confidence region constructed using the CNS method discussed in Torgovitsky

(2019) and Chernozhukov et al. (2015), implemented using 30 bootstrap draws and a tuning parameter of τn = 0.8.

Table 3: Habitual Brand Loyalty in IRI Data - Binomial DPO

5.3 Evidence of Forward Looking in Brand Loyalty

For our empirical application of the DDC, we need to specify the transition process for the loyalty

state `. We follow the convention in the literature and assume

`t =

 j if dt−1 = j ∈D−0,

`t if dt−1 = 0.
(5.1)

We also modify the consumer’s decision problem to accomodate stochastic timing of trips. We

use the cross-household mean probability of making a trip each week π . We can then modify our

moments (4.3) as follows:

ln
(

σ j(s)
σ0(s)

)
− ln

(
σ j(s′)
σ0(s′)

)
= βπ

(
F j(s)Bj−F0(s)B0−F j(s′)Bj +F0(s′)B0

)
[I−βπF0B0]

−1m

where B j =
[
I−β (1−π)F j

]−1.

To control for unobserved heterogeneity, we use the group fixed-effects approach of Bonhomme

et al. (2021). For details, please see Appendix A.4.

We start with our semi-parametric estimates of β using the minimum distance estimator (4.5).

The first two columns of Table 6 report the estimated population mean and standard error, respectively,

28



category brand ˆHBLlb ˆHBLub 95%CRlb 95%CRub
coffee MAXWELLS 0.182 0.190 0.080 0.314
deodorant MENNEN 0.190 0.293 0.099 0.415
mayonnaise HELLMANNS 0.052 0.391 0.030 0.434
margarine SMART BALANCE 0.066 0.426 0.021 0.540
peanut butter SKIPPY 0.141 0.270 0.112 0.319
spaghetti sauce RAGU 0.035 0.376 0.000 0.405
toothbrush COLGATE 0.085 0.211 0.000 0.425
yogurt YOPLAIT 0.056 0.370 0.000 0.417

This table summarizes the bounds on HBL conditional on purchasing the top-selling brand using the estimation samples drawn from the IRI

Academic Dataset. We report bounds for the cross-time average value of HBL j|Yt = j where j is the top-selling brand in each category. Estimation

is based on a binomial DPO model with J = 2 and T = 5. The choice sets consist of the top-selling brand and a composite brand representing all

other choice alternatives. ˆHBLlb and ˆHBLub incidate the estimated bounds. 95%CRlb and 95%CRub indicate the 95% confidence region

constructed using the CNS method discussed in Torgovitsky (2019) and Chernozhukov et al. (2015), implemented using 30 bootstrap draws and a

tuning parameter of τn = 0.8.

Table 4: Habitual Brand Loyalty Among Current Buyers - Binomial DPO

for each category. With the exception of spaghetti sauce, all of the point estimates are significantly

different from zero implying that consumers are indeed forward-looking. However, our point

estimates range from as low as 0.41 to very close to one. Given that we model a weekly choice,

these results suggest that most categories have very impatient consumers.A discount factor of

β = 0.9, for instance, implies an annual interest rate of 238%. Consumer impatience has also

been documented in the extant literature (e.g., Frederick et al. (2002); Dubé et al. (2014)).

We now turn to the parametric estimates from the DDC model. For the empirical application,

we assume:

u j(st) = γ j−α p jt +λ I{`t= j}, ∀ j ∈D−0.

We use an MPEC implementation of the maximum likelihood estimator. For details, please see

Appendix A.3. To control for unobserved heterogeneity, we once again use the group fixed-effects

approach of Bonhomme et al. (2021). For details, please see Appendix A.4.

The third and fourth columns of Table 6 report the discount factor estimates from the DDC. All

of our estimates are statistically significant (margarine only at the 10% level). Using the likelihood

ratio test, we reject the myopic model (with β = 0) in favor of the DDC with freely-varying β at the

5% significance level for all the categories except coffee (results reported in Table A19 in Appendix
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category brand ˆHBLlb ˆHBLub 95%CRlb 95%CRub
coffee MAXWELLS 0.292 0.305 0.128 0.499
deodorant MENNEN 0.282 0.435 0.147 0.615
mayonnaise HELLMANNS 0.058 0.431 0.033 0.478
margarine SMART BALANCE 0.075 0.480 0.024 0.608
peanut butter SKIPPY 0.219 0.418 0.174 0.493
spaghetti sauce RAGU 0.047 0.501 0.000 0.540
toothbrush COLGATE 0.101 0.252 0.000 0.506
yogurt YOPLAIT 0.072 0.475 0.000 0.534

This table summarizes the bounds on HBL conditional on repeat-purchasing the top-selling brand using the estimation samples drawn from the IRI

Academic Dataset. We report bounds for the cross-time average value of HBL j|Yt = jandYt− j = j where j is the top-selling brand in each

category. Estimation is based on a binomial DPO model with J = 2 and T = 5. The choice sets consist of the top-selling brand and a composite

brand representing all other choice alternatives. ˆHBLlb and ˆHBLub incidate the estimated bounds. 95%CRlb and 95%CRub indicate the 95%

confidence region constructed using the CNS method discussed in Torgovitsky (2019) and Chernozhukov et al. (2015), implemented using 30

bootstrap draws and a tuning parameter of τn = 0.8.

Table 5: Habitual Brand Loyalty Among Current Repeat Buyers - Binomial DPO

A.8). Once again, we see a wide range of values, implying a fair amount of consumer impatience.

However, our DDC results do not always line up exactly with the semi-parametric estimates. We

reject the hypothesis that the semi-parametric estimate of β equals the DDC estimate in 3 of our 8

categories (deodorant, mayonnaise, and yogurt).9

We report the full set of taste coefficient estimates for the static RUM and DDC specifications,

respectively, in Tables A20 to A27 in Appendix A.8. As in the extant literature, we find large

coefficient estimates for brand loyalty, λ , even after controlling for unobserved heterogeneity.

In most of the categories, the expected, dollar-denominated loyalty premium is over $1 (−λ

α
).

Surprisingly, we find almost no correlation between the estimated discount factor, β , and the other

taste coefficients in all of the categories. Consequently, the taste coefficients for the static and

dynamic models are quite similar in magnitude.

To compare our parametric results herein to the non-parametric results from section ??, we

compute the parametirc analog of the statistic HBL, as in (3.6):

HBL j =Pε [∃k 6= j ∈J s.t. j = argmax
l∈J

{vil(pt , j)+ εilt}, and j 6= argmax
l∈J

{vil(pt ,k)+ εilt},∀i, t].

9We test this hypothesis using the z-statistic: β MD−β DDC√
se2

MD+se2
DDC

??
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category Min. Dist. Min. Dist. (s.e.) DDC DDC (s.e.)
coffee 0.680 0.156 0.824 0.148
deodorant 0.999 0.066 0.998 0.011
mayonnaise 0.739 0.121 0.999 0.002
margarine 0.638 0.110 0.704 0.205
peanut butter 0.999 0.005 0.993 0.021
spaghetti sauce 0.503 0.159 0.914 0.096
toothbrushes 0.537 0.203 0.550 0.175
yogurt 0.999 0.115 0.474 0.158

This table summarizes the discount factor estimates from the estimation samples drawn from the IRI Academic Dataset. "Min. Dist." indicates the

semi-parameters, minimum distance estimator. "DDC" indicates the dynamic discrete-choice model estimates. All specifications use the "group

fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population mean value of a parameter.

Standard errors are computed via bootstrap.

Table 6: The Discount Factor β

See Appendix A.5 for details. Table 7 contains the results for the leading brand in each category.

XXXX

category brand ˆHBLMNL ˆHBLMNL (s.e.) ˆHBLDDC ˆHBLDDC (s.e.)
coffee MAXWELL Sm 0.517 0.051 0.517 0.051
deodorant MENNEN 0.650 0.022 0.667 0.067
mayonnaise HELLMANNS 0.719 0.035 0.711 0.077
margarine ICBINB 0.889 0.019 0.894 0.030
peanut butter SKIPPY 0.605 0.015 0.617 0.016
spaghetti sauce RAGU 0.630 0.029 0.636 0.032
toothbrushes COLGATE 0.450 0.076 0.420 0.080
yogurt YOPLAIT 0.741 0.026 0.743 0.026

This table summarizes the HBL statistics corresponding to the DDC estimates from the IRI Academic Dataset. HBL computed for the top brand in

each of the categories. All specifications use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter

values represent the population mean value of a parameter. Standard errors are computed via bootstrap.

Table 7: The Extent of Habitual Brand Loyalty (HBL): DDC evidence

In sum, we find strong evidence for forward-looking consumer behavior across product categories.

However, consumers appear to be more mypoic than would be implied by the real rate of interest.

We explore the implications of this behavior in the next section.
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6 Policy Implications

To asses the implications of consumer forward-looking behavior, we compare the short-run and

long-run elasticity of demand. For each category, we simulate the long-term effect of a 10%

increase in the price of the top-share brand in each state. We then compue the corresponding

expected elasticities in equilibrium, using the steady-state probabilities of each state. For the short-

run elasticities, we use the parameter estimates from the static version of the RUM with β = 0.

For the long-run elasticities, we use the DDC estimates, which allow β to vary freely in [0,1]. For

technical details of the simulation of elasticities, see Appendix A.6.

We report the results in Tables A1 to A8 in Appendix A.6. Even though the taste coefficients

are fairly similar in the static RUM and DDC specifications, we nevertheless observe striking

differences in the elasticities. The long-run elasticities are all considerably larger than the short-run

elasticities, indicating that consumer demand is much more price-sensitive when consumers plan

their future brand habits. The difference between the long-run and short-run own-price elasticities

vary from as low as 2%, in margarine, to 35.6%, in peanut butter. Turning to the cross-price

elasticities between brands, the long-run valuess are mostly hundreds or even thousands of percent

higher than the short-run values (coffee is the exception with cross-elasticity differences of about

65%). However, perhaps as expected, we see smaller impact on the outside good. Intuitively, if

consumers plan their future brand habits, then the "cost" of being loyal to the "wrong" brand is

higher, making consumers more sensitive to permanent price changes.

In sum, the static model appears to under-estimate the price-sensitivity of demand in response

to permanent price changes. In particular, the static model drastically under-estimates the substitution

between brands in the long term.

7 Conclusions

We have documented non-parametric evidence of brand loyalty across several CPG product categories

whereby a consumer’s past brand choices have a causal effect on her current choice, similar to

a "switching cost." We have also documented semi-parametric evidence that consumers make

forward-looking purchase decisions and consciously plan their future loyalty habits. However,

32



consumers appear to be more impatient than would be implied by the real rate of interest. Finally.

using a parametric dynamic discrete-choice model of demand, we show that the long-run price

elasticities of demand are considerably larger than would be implied by a static model with the

deterministic restriction β = 0. In sum, the combination of brand loyalty and forward-looking

behavior likely have a material impact on demand and market prices.
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A Appendix

A.1 Proofs of the DPO Model

Proof of Proposition 1: Denote shorthand Uit(− j)≡ (Uit(1), ...,Uit( j−1),Uit( j+1), ...,Uit(J)),

Uit(− jk) ≡ (Uit(1), ...,Uit( j−1),Uit( j+1), ..., ,Uit(k−1),Uit(k+1), ...,Uit(J)) and A k ≡J k \

{1, ...,1︸ ︷︷ ︸
k

} for k ∈ 1,2, ...,J.Note that if P ∈P?, then

HLB jt ≡PP[∃k : Uit( j) = j,Uit(k) 6= j]

=PP[Uit( j) = j,Uit(− j) ∈A J−1]

=PP[Yi(t−1) = j,Uit( j) = j,Uit(− j) ∈A J−1]+PP[Yi(t−1) 6= j,Uit( j) = j,Uit(− j) ∈A J−1]

=PP[Yi(t−1) = j,Yit = j,Uit(− j) ∈A J−1]+PP[Yi(t−1) 6= j,Uit( j) = j,Uit(− j) ∈A J−1]

(A.1)

where the first row is the definition of HBL jt , the first equality is re-writing the HBL pattern using

the shorthand, the third equality follows because under the DPO model, [Yi(t−1) = j,Uit( j) = j] if

and only if [Yi(t−1) = j,Yit = j].

When |J | ≥ 3, we can decompose HBL jt to be

HBL jt =PP[Yi(t−1) = j,Yit = j,Uit(− j) ∈A J−1]+∑
l 6= j
PP[Yi(t−1) = l,Uit( j) = j,Uit(− j) ∈A J−1]

=PP[Yi(t−1) = j,Yit = j,Uit(− j) ∈A J−1]

+∑
l 6= j
PP[Yi(t−1) = l,Uit(l) = j,Uit( j) = j,Uit(− jl) ∈A J−2]

+∑
l 6= j
PP[Yi(t−1) = l,Uit(l) 6= j,Uit( j) = j,Uit(− jl) ∈J J−2]

=PP[Yi(t−1) = j,Yit = j,Uit(− j) ∈A J−1]

+∑
l 6= j
PP[Yi(t−1) = l,Yit = j,Uit( j) = j,Uit(− jl) ∈A J−2]

+∑
l 6= j
PP[Yi(t−1) = l,Yit 6= j,Uit( j) = j,Uit(− jl) ∈J J−2]

where the second equality comes from re-writing the summation term using shorthand defined
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above, and the third equality follows because [Yi(t−1) = l,Uit(l) = j] if and only if [Yi(t−1) = l,Yit =

j], and [Yi(t−1) = l,Uit(l) 6= j] if and only if [Yi(t−1) = l,Yit 6= j]. Since the only restrictions put on

the three terms are the following for all l 6= j,

0≤PP[Yi(t−1) = j,Yit = j,Uit(k) = k]≤P[Yi(t−1) = j,Yit = j]

0≤PP[Yi(t−1) = l,Yit = j,Uit( j) = j,Uit(− jl) ∈A J−2]≤P[Yi(t−1) = l,Yit = j]

0≤PP[Yi(t−1) = l,Yit 6= j,Uit( j) = j,Uit(− jl) ∈J J−2]≤P[Yi(t−1) = l,Yit 6= j]

and there is no restriction put across the terms, we can find a P ∈P? that attains all upper bounds

and one that attains all lower bounds. Therefore, Θ? = [0,P[Yi(t−1) = j,Yit 6= j]+P[Yi(t−1) 6= j]].

When |J | = 2, the same logic follows with a bit modification. Let k = J \ j and we can

simplify HBL jt to be

HBL jt =PP[Yi(t−1) = j,Yit = j,Uit(k) = k]+PP[Yi(t−1) = k,Uit( j) = j,Uit(k) = k]

=PP[Yi(t−1) = j,Yit = j,Uit(k) = k]+PP[Yi(t−1) = k,Yit = k,Uit( j) = j] (A.2)

Since observational equivalence requires that

0≤PP[Yi(t−1) = j,Yit = j,Uit(k) = k]≤P[Yi(t−1) = j,Yit = j]

0≤PP[Yi(t−1) = k,Yit = k,Uit( j) = j]≤P[Yi(t−1) = k,Yit = k] (A.3)

and there is no restriction put between the two terms, Θ? = [0,P[Yi(t−1) = j,Yit = j]+P[Yi(t−1) =

k,Yit = k]] when |J |= 2.

Proof of Proposition 2: The stationarity of potential outcomes implied by the RUM depends on

the stationarity of counterfactual state variables (pt ,εt). When price covariates and random utility

shocks are stationary, potential outcomes have a stationarity distribution. For every t, t ′ ≥ 1, every
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u≡ (u1, ...,uJ) ∈ {1, ...,J}J ,

PP[Uit(1) = u1, ...,Uit(J) = uJ]

=P

[
argmax

k
{vk(pt ,1)+ εkt}= u1, ...,argmax

k
{vk(pt ,J)+ εkt}= uJ

]
=E

[
J

∏
k=1
1[uk = argmax

j
{v j(pt ,k)+ ε jt}]

]

=
∫ J

∏
k=1
1[uk = argmax

j
{v j(pt ,k)+ ε jt}]dFpt dFεt

=
∫ J

∏
k=1
1[uk = argmax

j
{v j(pt ′ ,k)+ ε jt ′}]dFp′t dFε ′t

=P

[
argmax

k
{vk(pt ′,1)+ εkt ′}= u1, ...,argmax

k
{vk(pt ′,J)+ εkt ′}= uJ

]
=PP[Uit ′(1) = u1, ...,Uit ′(J) = uJ] (A.4)

Proof of Proposition 3: A sufficient condition for Assumption MTS is A sufficient condition for

Assumption MTS is

PP[Uit(y) = j,Yi(t−1) = j|Yi(t−2) = ỹ]≥PP[Uit(y) = j|Yi(t−2)=ỹ] ·P[Ui(t−1) = j|Yi(t−2) = ỹ]

(A.5)

This is because if A and B are two events and B occurs with probability strictly within (0,1), then

P(A,B)≥P(A)P(B)⇒P[A|B]≥P[A|B{].

Define shorthand g(ε)≡ ε j−εk, Ω(p,y)≡ vk(p,y)−v j(p,y)= γk−γ j+α(pk− p j)+λ (I[l=k]−

I[l= j]). Then Assumption MTS is satisfied if

P[g(εt)≥Ω(p,y),g(εt−1)≥Ω(p, ỹ)|Yi(t−2) = ỹ] (A.6)

≥P[g(εt)≥Ω(p,y)|Yi(t−2) = ỹ] ·P[g(εt−1)≥Ω(p, ỹ)|Yi(t−2) = ỹ] (A.7)
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Since εt ⊥ p and (g(εt),g(εt−1)) are positvely correlated,

P[g(εt)≥Ω(p,y),g(εt−1)≥Ω(p, ỹ)|Yi(t−2) = ỹ]

=E
[
P
[
g(εt)≥Ω(p,y),g(εt−1)≥Ω(p, ỹ)|Yi0,ε1:(t−2), p,Yi(t−2)

]
|Yi(t−2) = ỹ

]
=E

[
P
[
g(εt)≥Ω(p,y),g(εt−1)≥Ω(p, ỹ)|Yi0,ε1:(t−2)

]
|Yi(t−2) = ỹ

]
≥E

[
P[g(εt)≥Ω(p,y)|Yi0,ε1:(t−2)] ·P[g(εt−1)≥Ω(p, ỹ)|Yi0,ε1:(t−2)]|Yi(t−2) = y

]
(A.8)

where the first equality comes from law of iterated expectation, the second equality comes from (1)

Yi(t−2) being completely determined by ε , p, and Yi0 and (2) εt ⊥ p, and the first inequality comes

from g(εt),g(εt−1) being positively correlated.

Since Ω(p,y) is decreasing in pk − p j for all y, we have both P[g(εt) ≥ Ω(p,y)|ε1:(t−2)]

and P[g(εt−1) ≥ Ω(p, ỹ)|ε1:(t−2)] are increasing in pk− p j, so that these two terms have positive

covariance (Lehmann 1966). Building on (A.8),

P[ε jt− εkt ≥ vk(p,y)− v j(p,y),ε j(t−1)− εk(t−1) ≥ vk(p, ỹ)− v j(p, ỹ)|Yi(t−2) = ỹ]

≥E
[
P[g(εt)≥Ω(p,y)|ε1:(t−2)] ·P[g(εt−1)≥Ω(p, ỹ)|ε1:(t−2)]|Yi(t−2) = y

]
≥E

[
P[g(εt)≥Ω(p,y)|ε1:(t−2)]|Yi(t−2) = ỹ

]
·E
[
P[g(εt−1)≥Ω(p, ỹ)|ε1:(t−2)]|Yi(t−2) = ỹ

]
=P[g(εt)≥Ω(p,y)|Yi(t−2) = ỹ] ·P[g(εt−1)≥Ω(p, ỹ)|Yi(t−2) = ỹ] (A.9)

Proof of Proposition 4: A sufficient condition for Assumption MTS is

PP[Uit(y) = j,Yi(t−1) = j|Yi(t−2) = ỹ]≥PP[Uit(y) = j|Yi(t−2)=ỹ] ·P[Ui(t−1) = j|Yi(t−2) = ỹ]

(A.10)

This is because if A and B are two events and B occurs with probability strictly within (0,1), then

P(A,B)≥P(A)P(B)

=⇒P[A|B] = P[A,B]
P[B]

≥P[A]≥ P[A]−P[A,B]
1−P[B]

=P[A|B{] (A.11)
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Therefore, Assumption MTS is satisfied if

P[argmax
k
{vk(pt ,y)+ εkt}= j,argmax

k
{vk(pt−1, ỹ)+ εk(t−1)}= j|Yi(t−2) = ỹ]

≥P[argmax
k
{vk(pt ,y)+ εkt}= j|Yi(t−2) = ỹ] ·P[argmax

k
{vk(pt−1, ỹ)+ εk(t−1)}= j|Yi(t−2) = ỹ]

(A.12)

Define shorthand Ω(ε, p,y) ≡ ε jt −maxk{vk(p,y)− v j(p,y) + εkt}. Then Assumption MTS is

satisfied if

P[Ω(εt , pt ,y)≥ 0,Ω(εt−1, pt−1, ỹ)≥ 0|Yi(t−2) = ỹ]

≥P[Ω(εt , pt ,y)≥ 0|Yi(t−2) = ỹ] ·P[Ω(εt−1, pt−1, ỹ)≥ 0|Yi(t−2) = ỹ] (A.13)

Since εt ∼ i.i.d. Fε(ε) and prices are time-invariant such that pt = pt−1 = p

P[Ω(εt , p,y)≥ 0,Ω(εt−1, p, ỹ)≥ 0|Yi(t−2) = ỹ]

=E
[
1 [Ω(εt , p,y)≥ 0,Ω(εt−1, p, ỹ)≥ 0] |Yi(t−2) = ỹ

]
=E

[
E
[
1 [Ω(εt , p,y)≥ 0,Ω(εt−1, p, ỹ)≥ 0] |Yi(t−2) = ỹ,Yi0,ε1:(t−2), p

]
|Yi(t−2) = ỹ

]
=E

[
P
[
Ω(εt , p,y)≥ 0,Ω(εt−1, p, ỹ)≥ 0|Yi0,ε1:(t−2), p

]
|Yi(t−2) = ỹ

]
=E

[
P [Ω(εt , p,y)≥ 0] ·P [Ω(εt−1, p, ỹ)≥ 0] |Yi(t−2) = ỹ

]
(A.14)

where the second equality comes from the law iterated expectation, the third equality comes from

Yi(t−1) being fully determined by the initial condition Yi0, the history of ε , and p, the last equality

comes from εt being i.i.d.

Note that P[Ω(εt , p,y)≥ 0] is the utility -maximizing choice probability σ j(p,y) and similarly

P[Ω(εt−1, p, ỹ)≥ 0] = σ j(ỹ, p), then (A.14) can be written as

P[Ω(εt , p,y)≥ 0,Ω(εt−1, p, ỹ)≥ 0|Yi(t−2) = ỹ]

=E
[
σ j(p,y) ·σ j(p, ỹ)|Yi(t−2) = ỹ

]
(A.15)

If choice probabilities σ j(y, p) and σ j(p, ỹ) have weakly positive covariance, we can build on
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(A.14)

P[argmax
k
{vk(p,y)+ εkt}= j,argmax

k
{vk(p, ỹ)+ εk(t−1)}= j|Yi(t−2) = ỹ]

≥E
[
σ j(p,y)|Yi(t−2) = ỹ

]
·E
[
σ j(p, ỹ)|Yi(t−2) = ỹ

]
=P[argmax

k
{vk(p,y)+ εkt}= j|Yi(t−2)] ·P[argmax

k
{vk(p, ỹ)+ εk(t−1)}= j|Yi(t−2) = ỹ]

(A.16)

where the inequality comes from (A.14), (A.15) and the weakly positive covariance of choice

probabilities, and the equality comes frome reversing back the construction of Ω(·). Therefore, the

sufficient condition (A.12) for Assumption MTS is satisfied.

Proof of Proposition 5: A sufficient condition for Assumption MTR is that

P

[
1[ j = argmax

l
{vl(pt , j)+ εlt}]≥ 1[ j = argmax

l
{vl(pt ,k)+ εlt}]

]
= 1 (A.17)

Note that in the RUM model, for j,k, l ∈D−0

vl(p, j)− vl(p,k) = ul(p, j)+βFl(p, j)(m+v0)−ul(p,k)−βFl(p,k)(m+v0)

= ul(p, j)−ul(p,k)+β (Fl(p, j)−Fl(p,k))(m+v0)

= ul(p, j)−ul(p,k) (A.18)

where the last equality comes from Fl(p, j)−Fl(p,k) = 0 under the assumption that the price

evolution is exogeneous, and literature convention that loyalty evolves deterministically after a

purchase.

If u j(p, j)− u j(p,k) ≥ 0 and ul(p, j)− ul(p,k) ≤ 0 at every p for all k, l ∈ D \ {0, j}, then

exogenously switching loyalty state from k to j weakly increases the choice-specific value function

of j and weakly decreases choice-specific value functions of all other alternatives. Therefore,

1[ j = argmaxl{vl(pt , j)+ εlt}]≥ 1[ j = argmaxl{vl(pt ,k)+ εlt}] must hold.
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A.2 DDC and the exclusion restriction

A consumer has perfect substitutes preferences over a set of J = 1, ...,J market goods in a commodity

group and a j = 0 outside good:

U(q,z) = Ũ( ∑
j∈D

γ jq j,z)

where z is an essential numeraire10 with pz = 1, q j is the quantity consumed of product j, ψ j

is the constant marginal utility per unit of product j, α is the marginal utility for the numeraire

(i.e., all other consumption expenditure), and y is her budget. Assume γ0 = 0 and p0 = 0. The

perfect substitutes preferences is necessary for the consumer to select at most one of the product

alternatives (discrete choice). If the consumer also has unit demand for the products, q j ∈ 0,1, ∀ j ∈

D , then she will purchase one unit of the product with the highest of the following choice-specific

values

v j = Ũ(γ j,y− p j), ∀ j ∈D .

These choice-specific values give rise to the standard discrete-choice model of demand. As can be

seen, the choice-specific value of a product j does not depend on any of hte other prices, p−j.

A.3 MPEC Estimator for DDC

In the empirical data, we observe i = 1, ...,N choice occasions during which a consumer makes a

discrete choice j = inD . Define the vector of outcomes, Yi = (Yi0, ...,YiJ) where Yi j ∈ 0,1 indicates

whether the consumer chooses j. From the empirical DDC model in section 5.3, a consumer’s

choice-specific values are:

v j (s;θ ,β ) = γ j−α p j +λ I{`= j}+βπF j(s)B j (β ) ln

{
∑

k∈D
exp(vk)

}

where θ = (γ1, ...,γJ,α,λ ) is the vector of taste parameters, β ∈ [0,1) is the discount factor, F jis

the L×L state transition matrix conditional on current choice j and B j (β ) =
[
I−β (1−π)F j

]−1

10We assume (.,.) is quasi-linear in its second argument to ensure the consumer always purchases a strictly positive
quantity of the numeraire good, z.
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is an (L×L) matrix. Let Γ = (β ,θ) denote all the structural parameters.

Let v =
(
v j1,v j2, ....,vJ+1,L

)
denote the choice-specific values in each of the L states. We can

now define an MPEC estimator:

Θ
∗ = argmax

Θ=(Γ,v)

N

∑
i=1

J

∑
j=0

(
Yi j ln

(
σ j (pi, `i;θ ,v)

))
subject to the constraints

G js (Θ) = v js−u j(s;Γ)−βπF j(s)B j(β ) ln
{

∑
k∈D

exp(vk)

}
, ∀ j ∈D ,∀s ∈S

where

σ j(pi, `i;θ ,v) =
exp
(
u j (pi, `i;θ)+ v jsi−u j (si;θ)

)
∑

k∈D
exp(uk (pi, `i;θ)+ vksi−uk (si;θ))

and

u j(p, `;θ) = γ j−α p j +λ I{`= j}.

Note that we only discretize the expected future prices. So we evaluate the flow utility at the

observed prices when we write u j(pi, `;θ) and we use the cluster classification for a given price

when we write u j(si;θ).

We also provide gradients to improve the robustness and speed of the outer-loop optimization

in the MPEC estimator. For the objective function, we use automatic differentiation.11. To improve

speed, we supply code for the constraint Jacobian. A useful result for the derivation of the

constraint Jacobian is that ∇β B j (β ) = B j (β )(1−π)Fj (s)B j (β ) . The Jacobian elements are:

∂G js(Θ)
∂β

= −πF j(s)B j(β ) ln
{

∑
k∈D

exp(vk)

}
−βπF j(s)B j(β )(1−π)F j(s)B j(β ln

{
∑

k∈D
exp(vk)

}
∂G js(Θ)

∂θk
= −xs jk

∂G js(Θ)
∂v js

= 1−βπF js(s)B j(β )σ js,∀ j∈D ,∀s ∈S

∂G js(Θ)
∂vns′

= −βπF js′(s)B j(β )σns′,∀ j∈D ,∀n ∈D− j,∀s,s′ ∈S

where σ js ≡ σ j(s;θ ,v)
11We use the dl package in matlab to obtain exact derivatives
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A.4 Group Fixed-Effects and Unobserved Heterogeneity

To control for the well-known persistent, unobserved heterogeneity in consumer tastes for CPG

products (e.g., Allenby and Rossi, 1998). We implement a grouped fixed effects (GFE) approach

(Bonhomme et al., 2021). This approach allows us to estimate the mean effects of our structural

parameters,Θ, in a way that is robust to unspecicied between-consumer heterogeneity.

Let consumers be indexed by h = 1, ...,H. We use a k-means clustering algorithmWe use

Matlab’s kmeans function to classify each consumer into groups based on the vector of data

moments, wh, that are informative about the heterogeneity. Given our moderate-sized cross-

section, we use K = 3 groups. The moments consider of hosuehold’s demographics and shopping

summaries. The demographics consist of income, household size, age of primary shopper, highschool

completion dummy, college completion dummy, retired dummy, unemployed dummy, presence of

dogs, presence of cats, presence of children, marital status, hispanic dummy, white dummy and

black dummy. The shopping moments consist of each household’s propensity to purchase each of

the available brands.

Standard errors are calculated by block-bootstrapping consumers and re-running the kmean

clustering.

A.5 Computing the HBL statistic under the DDC

To conform with the HBL measurement under the DPO, We use only those trips during which

a purchase occurs. To simulate choices in each observed state, we first use the DDC estimates

to compute the predicted choice-specific values at each observed state, sit where i = 1, ...,N and

t = 1, ...,T : {v̂ilt(sit)}l∈D . We then simulate random utilities εilt for each choice alternative l ∈J ,

consumer i and time period t. We then approximate HBL j as follows:

HBL j =Pε [∃k 6= j ∈J s.t. j = argmax
l∈J

{vil(pt , j)+ εilt}, and j 6= argmax
l∈J

{vil(pt ,k)+ εilt},∀i, t]

(A.19)

≈ 1
NT R

N

∑
i=1

T

∑
t=1

R

∑
r=1
1[ j = argmax

l∈J
{vil(pt , j)+ ε

r
ilt}, and j 6= argmax

l∈J
{vil(pt ,k)+ ε

r
ilt},∀i, t ]. 2005/06/28ver : 1.3sub f igpackage

(A.20)
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To implement HBL, we use R = 10,000 simulation draws. Intuitively, HBL j measures the fraction

of trips (conditional on purchase) for which a consumer would repeat-buy brand j when loyal to

it; but would buy a different brand under at least one alternative loyalty state.

A.6 Computing the Long-Run Elasticity of Demand

To compute the long-run elasticity of demand, we compute the expected change in the steady-

state choice probabilities for each product when we permanently increase the price of the top-

selling brand, k. Formally, we compute the factual expected choice probabilities in equilibrium,

Πσ (p, `), where σ (p, `) is the (L× J+1) matrix of choice probabilities in each of the L states and

Π is the (1×L) row-vector of equilibrium probabilities of being in each state. We then create a

counterfactual set of L states which are identical to (p, `) except for the modification for product k:

p̃kr = 1.1pkr. We then compute the corresponding counter-factual expected choice probabilities in

equilibrium, Π̃σ (p̃, `) where Π̃ is the vector of counter-factual equilibrium probabilities of being

in each state. The long-run elasticity of demand is then:

ε
LR
j =

σ(p̃,`)Π̃−σ(p,`)Π
σ(p,`)Π

0.1
. (A.21)

We compute the steady-state probabilities as follows. Let Q be the (R× J) transition matrix for

prices. We compute the (1× J) row=vector of steady-state price probabilities, q = qQ, by taking

the left eigenvector of Q corresponding to the eigenvalue 1. We then use forward-simulation to find

the steady-state probabilities Π corresponding to the combined state, (p, `),with transition matrix,

F. We repeat the following steps r = 1, ...,R times:

1. Initialize prices by assuming they are in equilibrium and drawing pr
0 ∈S using the probabilities

q. Then simulate a sequence of prices of length T , pr ≡ (pr
1, ...,p

r
T ), using the transition

process Q.

2. Initialize the loyalty state by drawing `0∈J from uniform discrete distribution. Then use

the sequence of prices, pr, and the DDC to simulate a choice sequence of length T and the

corresponding sequence of loyalty states, `r = (`r
1, ..., `

r
T ).
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We can then approximate the steady-state probabilities, Π, as follows:

Πl =
1
R

R

∑
r=1
1 [sr

T = sl] , ∀l ∈S . (A.22)

We use R = 3000 and T = 200. Results for the CPG categories are displayed in tables A1 to A8.

brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
FOLGERSS -3.257 -3.391 4.1
FOLGERSL 0.13 0.214 65
MAXWELLS 0.142 0.234 64.5
MAXWELLL 0.146 0.235 60.4
PRIVATELABELS 0.145 0.236 62.4
no purch 0.164 0.16 -2

Table A1: LR elasticities: Coffee

brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
DEGREE -1.277 -1.621 27
DOVE 0.009 0.198 2189.1
MENNEN 0.009 0.174 1844.3
OLDSPICE 0.009 0.178 1847.8
RIGHT 0.009 0.17 1750.2
SECRET 0.009 0.17 1707.5
no purch 0.013 0.014 14.5

Table A2: LR elasticities: Deodorant

brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
HELLMANNS -2.581 -3.011 16.7
PRIVATELABEL 0.045 2.115 4612.2
KRAFTMAYO 0.048 1.811 3637
no purch 0.088 0.1 14.6

Table A3: LR elasticities: Mayonnaise
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brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
ICANTBELIEVEITSNOTBUTTER -1.228 -1.253 2
SMARTBALANCE 0.012 0.034 173.5
SHEDDSCOUNTRYCROCK 0.013 0.045 259.6
PROMISE 0.014 0.042 210.3
no purch 0.044 0.049 11.8

Table A4: LR elasticities: Margarine

brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
JIF -1.446 -1.961 35.6
PETERPAN 0.022 0.389 1667.1
PRIVATELABEL 0.023 0.354 1415.1
SKIPPY 0.025 0.286 1022
no purch 0.032 0.032 2

Table A5: LR elasticities: Peanut Butter

A.7 Estimating DPO Bounds from Theoretical Choice Sequence Probabilities

To assess the performance of the DPO model, we estimate DPO bounds from the theoretical

probabilities of choice sequences generated by a Randum Utility Model with known parameters.

By using the theoretical probabilities of observing a choice sequence, we can derive DPO bounds as

if we have infinite data, and hence separating the estimation problem from the inference problem.

Formally, we assume a data generating process as in (2.3) where the flow utility takes the form

u j(s) = γ j−α p j+λ1{`t= j} and the loyalty state evolution follows (5.1). We calculate the expected

probability of observing a choice sequence in equilibrium,

P[Yi = (y0, ...,yT )]

= QsP[Yi = (y0, ...,yT )|s0 = s]

= QsP[Yi0 = y0|s0 = s]
T

∏
t=1

P[Yit = yt |Yi(0:(t−1)) = (y0, ..,yt−1),s0 = s]

where Qs is a vector of equilibrium probabilities of being in state s, P[Yi0 = y0|s0 = s] is a state-

specific choice probability conditional on being in the initial state s0, and P[Yit = yt |Yi(0:(t−1)),s0] is

a one-period choice probability conditional on a choice history and the initial state. We can further
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brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
FRANCESCORINALDI -3.086 -3.302 7
HUNTS 0.086 0.525 510.1
PREGO 0.089 0.562 528.5
RAGU 0.099 0.577 482.2
no purch 0.129 0.138 7.4

Table A6: LR elasticities: Spaghetti Sauce

brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
COLGATE -1.842 -1.925 4.5
ORALB 0.017 0.22 1174.6
no purch 0.022 0.023 3.9

Table A7: LR elasticities: Toothbrushes

simplify the conditional choice probability term

P[Yit = yt |Yi(0:(t−1)),s0]

= G(pt |s0)P[Yit = yt |Yi(0:(t−1)),pt ,s0]

= G(p1|s0)(Fp)
t−1P[Yit = yt |pt , `t ]

where Fp is the exogenous Markov price transition distribution, G(p1|s0) =
[
F ′p, ...,F

′
p
]′

L×|P| is

a one-period transition probability from initial state s0 to the support points of prices in the next

period, and P[Yit = yt |pt , `t ] is the choice probability conditional on being in state (pt , `t), where `t

is determined recursively by the initial loyalty state `0 and the chocie history through `t = 1[yt−1 =

J+1]`t−1 +1[yt−1 6= J+1]yt−1.

With a known set of parameters of the parametric DDC model, we can calculate theoretical

probabilities of all permutations of a choice sequence of length T1. We further count the probabilities

of the last T2 purchases conditional having at least T2 purchases in the sequence. We feed the

resulting theoretical probability of a choice sequence of length T2 into the DPO model for estimation.

Table A9 and A10 report the DPO bounds estimated from various data generating processes.
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brand SR Elasticity (RUM) LR Elasticity (DDC) % difference
YOPLAIT -1.402 -1.547 10.4
DANNON 0.05 0.338 573.6
COLOMBO 0.057 0.361 532.9
no purch 0.098 0.111 13.1

Table A8: LR elasticities: Yogurt

β λ
true
HBL

ˆHBLlb ˆHBLub

0.000 0.000 0.000 0.000 0.000
0.900 0.000 0.000 0.000 0.000
0.000 1.000 0.322 0.046 0.371
0.900 1.000 0.313 0.003 0.375

This table summarizes the HBL bounds estimated from theoretical probabilities of a two-product choice sequences using a binary DPO model.

Choices are generated by an RUM with various β and λ . Choice sequence probabilities are calculated with T1 = 15 and T2 = 6.

Table A9: Theoretical bounds: A 2-product D.G.P.

A.8 Other Tables
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β λ
true
HBL

ˆHBLlb ˆHBLub

0.000 0.000 0.000 0.000 0.032
0.900 0.000 0.000 0.000 0.032
0.000 1.000 0.346 0.019 0.285
0.900 1.000 0.344 0.011 0.284

(a) Binary DPO Bounds

β λ
true
HBL

ˆHBLlb ˆHBLub

0.000 0.000 0.000 0.001 0.024
0.900 0.000 0.000 0.001 0.024
0.000 1.000 0.346 0.007 0.474
0.900 1.000 0.344 0.005 0.477

(b) Multinomial DPO Bounds
This table summarizes the HBL bounds estimated from theoretical probabilities of a four-product choice sequences. Choices are generated by an

RUM with various β and λ . Choice sequence probabilities are calculated with T1 = 10 and T2 = 6, and by collapsing choices in to (a) the most

popular brand and a composite brand and (b) top two brands and a composite brand.

Table A10: Theoretical bounds: A 4-product D.G.P.

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
MAXWELLS [0.137,0.233] [0.182,0.190] [0.292,0.305]

[0.039,0.308] [0.080,0.314] [0.128,0.499]

FOLGERSS [0.032,0.272] [0.051,0.327] [0.083,0.532]
[0.000,0.309] [0.000,0.396] [0.000,0.645]

FOLGERSL [0.054,0.282] [0.148,0.359] [0.311,0.787]
[0.035,0.304] [0.094,0.375] [0.194,0.832]

PRIVAT ELABELS [0.025,0.344] [0.125,0.433] [0.262,0.914]
[0.024,0.347] [0.124,0.437] [0.261,0.927]

MAXWELLL [0.000,0.367] [0.000,0.227] [0.000,0.986]
[0.000,0.367] [0.000,0.228] [0.000,0.986]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
MAXWELLS [0.070,0.395] [0.096,0.643] [0.000,0.865]

[0.029,0.489] [0.029,0.804] [0.000,1.000]

FOLGERSS [0.078,0.440] [0.120,0.841] [0.000,0.995]
[0.000,0.524] [0.030,1.000] [0.000,1.000]

FOLGERSL [0.067,0.239] [0.161,0.499] [0.009,0.726]
[0.024,0.350] [0.056,1.000] [0.000,1.000]

PRIVAT ELABELS [0.034,0.247] [0.177,0.859] [0.009,0.964]
[0.000,0.426] [0.000,1.000] [0.000,1.000]

MAXWELLL [0.066,0.089] [0.445,0.656] [0.443,0.943]
[0.020,0.475] [0.137,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Coffee category in the IRI Academic Datasets. Brands are ordered by

popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last six

purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A11: DPO Estimates from the Coffee cateogry
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brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
MENNEN [0.107,0.307] [0.190,0.293] [0.282,0.435]

[0.000,0.358] [0.099,0.415] [0.147,0.615]

OLD SPICE [0.086,0.347] [0.198,0.428] [0.330,0.707]
[0.086,0.367] [0.197,0.471] [0.329,0.777]

DOVE [0.058,0.173] [0.175,0.235] [0.305,0.409]
[0.000,0.257] [0.000,0.542] [0.000,0.937]

RIGHT [0.058,0.224] [0.209,0.371] [0.446,0.784]
[0.000,0.273] [0.000,0.437] [0.000,0.920]

DEGREE [0.035,0.301] [0.167,0.386] [0.351,0.808]
[0.000,0.329] [0.000,0.466] [0.000,0.971]

SECRET [0.020,0.281] [0.152,0.397] [0.321,0.821]
[0.000,0.281] [0.000,0.402] [0.320,0.838]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
MENNEN [0.071,0.513] [0.112,0.936] [0.000,1.000]

[0.000,0.617] [0.056,1.000] [0.000,1.000]

OLD SPICE [0.049,0.380] [0.088,0.718] [0.007,0.941]
[0.029,0.474] [0.009,1.000] [0.000,1.000]

DOVE [0.039,0.249] [0.122,0.728] [0.000,0.943]
[0.000,0.329] [0.000,1.000] [0.000,1.000]

RIGHT [0.049,0.256] [0.149,0.801] [0.000,0.972]
[0.000,0.320] [0.000,1.000] [0.000,1.000]

DEGREE [0.051,0.319] [0.208,0.704] [0.020,0.945]
[0.000,0.416] [0.095,1.000] [0.000,1.000]

SECRET [0.050,0.212] [0.326,0.834] [0.159,0.940]
[0.016,0.370] [0.073,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Deodorant category in the IRI Academic Datasets. Brands are ordered

by popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last

six purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A12: DPO Estimates from the Deodorant cateogry

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
HELLMANNS [0.065,0.386] [0.052,0.391] [0.058,0.431]

[0.033,0.429] [0.030,0.434] [0.033,0.478]

PRIVATE LABEL [0.040,0.343] [0.131,0.274] [0.207,0.431]
[0.000,0.401] [0.000,0.328] [0.000,0.515]

KRAFT MAYO [0.033,0.234] [0.138,0.445] [0.217,0.705]
[0.000,0.286] [0.000,0.639] [0.000,1.000]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
HELLMANNS [0.042,0.579] [0.032,0.649] [0.001,0.705]

[0.023,0.671] [0.018,0.774] [0.000,0.839]

PRIVATE LABEL [0.026,0.409] [0.081,0.713] [0.003,0.894]
[0.000,0.494] [0.000,0.714] [0.000,1.000]

KRAFT MAYO [0.028,0.281] [0.128,1.000] [0.005,1.000]
[0.011,0.327] [0.035,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Mayonnaise category in the IRI Academic Datasets. Brands are ordered

by popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last

six purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A13: DPO Estimates from the Mayonnaise cateogry
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brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
SMART BALANCE [0.045,0.485] [0.066,0.426] [0.075,0.480]

[0.000,0.560] [0.021,0.540] [0.024,0.608]

ICBINB [0.047,0.342] [0.085,0.429] [0.100,0.506]
[0.000,0.432] [0.044,0.553] [0.052,0.652]

SHEDDS COUNTRY CROCK [0.060,0.273] [0.165,0.329] [0.203,0.400]
[0.041,0.392] [0.091,0.772] [0.112,0.938]

PROMISE [0.025,0.342] [0.112,0.503] [0.143,0.639]
[0.000,0.458] [0.000,0.816] [0.000,1.000]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
SMART BALANCE [0.037,0.574] [0.044,0.707] [0.002,0.743]

[0.000,0.706] [0.009,0.856] [0.000,1.000]

ICBINB [0.048,0.466] [0.061,0.848] [0.000,0.947]
[0.027,0.535] [0.024,1.000] [0.000,1.000]

SHEDDS COUNTRY CROCK [0.039,0.339] [0.112,0.790] [0.012,0.907]
[0.013,0.411] [0.020,1.000] [0.000,1.000]

PROMISE [0.016,0.383] [0.086,1.000] [0.000,1.000]
[0.001,0.471] [0.000,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Margarine category in the IRI Academic Datasets. Brands are ordered

by popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last

six purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A14: DPO Estimates from the Margarine cateogry

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
SKIPPY [0.081,0.261] [0.141,0.270] [0.219,0.418]

[0.064,0.288] [0.112,0.319] [0.174,0.493]

JIF [0.036,0.299] [0.044,0.341] [0.064,0.491]
[0.019,0.326] [0.027,0.372] [0.038,0.537]

PRIVATE LABEL [0.058,0.326] [0.108,0.271] [0.171,0.428]
[0.040,0.354] [0.070,0.304] [0.112,0.481]

PETER PAN [0.023,0.230] [0.083,0.301] [0.222,0.849]
[0.022,0.230] [0.083,0.301] [0.221,0.849]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
SKIPPY [0.056,0.485] [0.087,0.884] [0.000,0.998]

[0.046,0.535] [0.063,0.928] [0.000,1.000]

JIF [0.046,0.432] [0.068,0.741] [0.000,0.941]
[0.008,0.488] [0.051,0.812] [0.000,1.000]

PRIVATE LABEL [0.038,0.430] [0.080,0.700] [0.000,0.917]
[0.026,0.474] [0.056,0.749] [0.000,1.000]

PETER PAN [0.036,0.183] [0.259,1.000] [0.013,1.000]
[0.026,0.223] [0.152,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Peanut Butter category in the IRI Academic Datasets. Brands are ordered

by popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last

six purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A15: DPO Estimates from the Peanut Butter cateogry
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brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
RAGU [0.034,0.324] [0.035,0.376] [0.047,0.501]

[0.000,0.362] [0.000,0.405] [0.000,0.540]

FRANCESCO RINALDI [0.031,0.247] [0.081,0.257] [0.160,0.508]
[0.000,0.280] [0.000,0.290] [0.000,0.572]

PREGO [0.065,0.253] [0.146,0.319] [0.238,0.516]
[0.038,0.289] [0.090,0.517] [0.144,0.832]

HUNTS [0.030,0.272] [0.152,0.299] [0.287,0.569]
[0.000,0.311] [0.045,0.476] [0.000,0.909]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
RAGU [0.029,0.493] [0.030,0.702] [0.000,0.837]

[0.000,0.536] [0.000,0.777] [0.000,0.892]

FRANCESCO RINALDI [0.031,0.345] [0.070,0.695] [0.000,0.929]
[0.000,0.383] [0.000,0.809] [0.000,1.000]

PREGO [0.046,0.349] [0.100,0.886] [0.000,1.000]
[0.020,0.399] [0.046,1.000] [0.000,1.000]

HUNTS [0.034,0.314] [0.158,0.832] [0.000,0.994]
[0.014,0.360] [0.054,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Spaghetti Sauce category in the IRI Academic Datasets. Brands are

ordered by popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s

last six purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand

and a composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines

shorter models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A16: DPO Estimates from the Spaghetti Sauce cateogry

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
COLGATE [0.162,0.242] [0.085,0.211] [0.101,0.252]

[0.000,0.382] [0.000,0.425] [0.000,0.506]

ORAL B [0.162,0.242] [0.283,0.285] [0.402,0.405]
[0.000,0.382] [0.000,0.590] [0.000,0.839]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
COLGATE [0.162,0.242] [0.085,0.211] [0.101,0.251]

[0.053,0.423] [0.000,0.499] [0.000,0.593]

ORAL B [0.162,0.242] [0.283,0.285] [0.402,0.405]
[0.053,0.423] [0.075,0.662] [0.106,0.939]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Toothbrush category in the IRI Academic Datasets. Brands are ordered

by popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last

six purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A17: DPO Estimates from the Toothbrush cateogry
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brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
YOPLAIT [0.048,0.373] [0.056,0.370] [0.072,0.475]

[0.000,0.411] [0.000,0.417] [0.000,0.534]

DANNON [0.045,0.266] [0.075,0.338] [0.111,0.500]
[0.000,0.304] [0.000,0.424] [0.000,0.626]

COLOMBO [0.040,0.330] [0.101,0.351] [0.160,0.555]
[0.000,0.378] [0.000,0.432] [0.000,0.683]

(a) Binary DPO Bounds

brand HBL HBL|Yt = j HBL|Yt = Yt−1 = j
YOPLAIT [0.038,0.526] [0.044,0.691] [0.000,0.823]

[0.000,0.603] [0.015,0.838] [0.000,1.000]

DANNON [0.038,0.447] [0.053,0.895] [0.000,1.000]
[0.000,0.531] [0.000,1.000] [0.000,1.000]

COLOMBO [0.031,0.426] [0.063,0.840] [0.000,0.966]
[0.000,0.489] [0.000,1.000] [0.000,1.000]

(b) Multinomial DPO Bounds
This table summarizes the brand-specific HBL bounds estimated from the Yogurt category in the IRI Academic Datasets. Brands are ordered by

popularity. For each brand, the first row reports estimated bounds and the second row reports 95% confidence region. Each household’s last six

purchases are reconstructed to be (a) a focal brand and a composite brand for the binary DPO model, and (b) the top brand, focal brand and a

composite brand for the multinomial DPO model. Assumptions ST(1), MTS and MTR are imposed. The multinomial DPO model combines shorter

models of length ML = 3 to model observations of T = 5. Tuning parameter is set to be τn = 0.8 and the number of bootstrap samples 30.

Table A18: DPO Estimates from the Yogurt cateogry

category Likelihood Ratio (homogeneous) Likelihood Ratio (GFE)
coffee 46.689 29.018
deodorant 118.639 110.629
mayonnaise 833.802 818.123
margarine 133.954 69.099
peanut butter 485.134 448.643
spaghetti sauce 109.754 108.661
toothbrushes 17.271 14.697
yogurt 5.046 29.679
critical value 3.841 7.815

This table summarizes the likelihood ratio tests using the estimation samples drawn from the IRI Academic Dataset. The null model is the static

RUM with β = 0 and the alternative model is the DDC with β allowed to vary freely. Critical values of the χ2 statistic are for a the 5%

significance level.

Table A19: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications
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coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.563 0.181
price -1.050 0.080 -1.048 0.080
loyalty 1.479 0.157 1.479 0.157
FOLGERSS 0.549 0.383 0.519 0.383
FOLGERSL -0.913 0.315 -0.893 0.318
MAXWELLS 0.840 0.348 0.819 0.344
MAXWELLL -0.988 0.344 -0.938 0.346
PRIVATELABELS -0.900 0.405 -0.916 0.398

This table summarizes the static RUM and DDC coefficient estimates from the Coffee category in the IRI Academic Dataset. All specifications use

the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population mean value of a

parameter. Standard errors are computed via bootstrap.

Table A20: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications

coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.990 0.103
price -0.490 0.083 -0.498 0.081
loyalty 1.954 0.089 1.954 0.089
DEGREE -4.530 0.299 -4.424 0.289
DOVE -4.528 0.238 -4.413 0.234
MENNEN -4.069 0.267 -4.111 0.258
OLDSPICE -4.127 0.296 -4.091 0.280
RIGHT -4.513 0.255 -4.444 0.261
SECRET -4.152 0.367 -4.031 0.355

This table summarizes the static RUM and DDC coefficient estimates from the Deodorants category in the IRI Academic Dataset. All

specifications use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population

mean value of a parameter. Standard errors are computed via bootstrap.

Table A21: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications
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coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.374 0.194
price -0.714 0.144 -0.715 0.145
loyalty 3.207 0.152 3.207 0.150
ICANTBELIEVEITSNOTBUTTER -3.780 0.351 -3.784 0.352
SMARTBALANCE -3.887 0.357 -3.883 0.360
SHEDDSCOUNTRYCROCK -4.493 0.300 -4.439 0.292
PROMISE -4.025 0.469 -4.042 0.455

This table summarizes the static RUM and DDC coefficient estimates from the Margarine category in the IRI Academic Dataset. All specifications

use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population mean value of

a parameter. Standard errors are computed via bootstrap.

Table A22: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications

coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.996 0.042
price -2.083 0.154 -2.077 0.155
loyalty 2.028 0.141 2.027 0.142
HELLMANNS -1.347 0.305 -1.365 0.307
PRIVATELABEL -2.860 0.245 -2.800 0.231
KRAFTMAYO -2.283 0.254 -2.020 0.261

This table summarizes the static RUM and DDC coefficient estimates from the Mayonnaise category in the IRI Academic Dataset. All

specifications use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population

mean value of a parameter. Standard errors are computed via bootstrap.

Table A23: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications

coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 1.000 0.046
price -0.861 0.084 -0.900 0.087
loyalty 1.617 0.047 1.617 0.047
JIF -2.919 0.163 -2.906 0.165
PETERPAN -3.809 0.147 -3.546 0.154
PRIVATELABEL -3.419 0.148 -3.289 0.150
SKIPPY -2.952 0.159 -2.900 0.164

This table summarizes the static RUM and DDC coefficient estimates from the Peanut Butter category in the IRI Academic Dataset. All

specifications use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population

mean value of a parameter. Standard errors are computed via bootstrap.

Table A24: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications

58



coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.929 0.206
price -3.104 0.193 -3.103 0.192
loyalty 1.663 0.100 1.663 0.100
FRANCESCORINALDI -1.914 0.203 -1.830 0.206
HUNTS -2.724 0.236 -2.615 0.231
PREGO -0.635 0.262 -0.621 0.264
RAGU -0.085 0.271 -0.128 0.265

This table summarizes the static RUM and DDC coefficient estimates from the Spaghetti Sauce category in the IRI Academic Dataset. All

specifications use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population

mean value of a parameter. Standard errors are computed via bootstrap.

Table A25: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications

coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.478 0.208
price -0.796 0.102 -0.792 0.101
loyalty 1.070 0.195 1.070 0.193
COLGATE -2.995 0.395 -3.011 0.386
ORALB -2.345 0.344 -2.333 0.348

This table summarizes the static RUM and DDC coefficient estimates from the Toothbrushes category in the IRI Academic Dataset. All

specifications use the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population

mean value of a parameter. Standard errors are computed via bootstrap.

Table A26: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications

coefficient MNL s.e. (MNL) DDC s.e. (DDC)
beta 0.000 0.000 0.924 0.225
price -0.830 0.083 -0.831 0.083
loyalty 1.993 0.120 1.993 0.120
YOPLAIT -2.219 0.220 -2.251 0.219
DANNON -2.691 0.184 -2.662 0.176
COLOMBO -3.253 0.242 -3.147 0.249

This table summarizes the static RUM and DDC coefficient estimates from the Yogurt category in the IRI Academic Dataset. All specifications use

the "group fixed-effects" approach to control for unobserved heterogeneity. Reported parameter values represent the population mean value of a

parameter. Standard errors are computed via bootstrap.

Table A27: Likelihood Ratio Tests for the static and dynamic (DDC) RUM Specifications
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