Function and Analysis of Posttranslational Protein Modifications

Vorlesung 4610
Paul Jenö
Department of Biochemistry
Biozentrum

Posttranslational Modifications of Proteins

http://www.abrf.org/index.cfm/dm.h ome?AvgMass=all

Approx. naturally occuring 260 PTMs listed!

Posttranslational Modifications of Proteins

- Covalent attachment of chemical groups to a protein
- Some modifications occur while the protein is translated and exit from the ribosome
- Other modifications occur only after protein translation
- Require dedicated enzymatic catalysis

Possible Sites of Modifications in Proteins

Ser, Thr, Tyr

Lys acetylation

Lys ubiquitination

NH₂
$$\bigoplus$$
 O \bigoplus H₃N~~~~NH₃ \bigoplus H₃N~~~~NH₃ \bigoplus Ubiquitin Lys Activated Ubiquitin

- Cys lipidation
- Acylation by long chain fatty acyl CoAs (C₁₄, C₁₆)
- Prenylation by C₁₅ (farnesylation)

Modifications

Glu methylation

Glu carboxylation (blood coagulation cascades)

General Reaction Scheme for PTM of Proteins

ATP → phosphoproteins

AcylCoAs → acylated lipoproteins

UDPGIcNAc → glycoproteins

General Reaction Scheme for PTM of Proteins

 Farnesyl-PP, Geranylgeranyl-PP → prenylated lipoproteins

SAM → Methylated proteins

Cellular Sites of Major Post-translational Modifications

Site

Cytoplasm

Modification

Removal of initiating Met

Acetylation of N-terminus

Myristoylation of N-terminus

O-Glycosylation with GlcNac

Addition of palmitoyl groups

Cellular Sites of Major PTM's

Site

Mitochondria/Chloroplasts

Golgi Apparatus

Secretory Vesicles/Granules

Modification

Cleavage of Signal Peptides

Modification of N-glycosyl groups,

O-glycosylation with GalNAc

Amidation of C-terminus

Proteolytic processing of

some precursors

Cellular Sites of Major PTM's

Site Modification

ER Cleavage of signal peptides

Core glycosylation of Asn residues

Addition of palmitoyl and glycosyl-phosphatidylinositol

Hydroxylation of Pro/Lys in procollagen

Disulfide bond formation

Functions Enabled by Posttranslational Modification

- Alterations in local folding of proteins
 - E.g. transitions between unstructured and structured regions
 - Generation of charge pairs
- Marking proteins for degradation
 - Proteasome targeting
- Marking chromatin for transcriptional regulation
- Changing the intracellular or extracellular adresses of proteins
 - Signal peptides direct proteins to ...
 - Plasma membrane
 - Secretory pathway
 - Mitochondria
 - Cytosol
- Inactive apo to active holo forms of enzymes

Sets of Enzymes

- PTMs are generally stable modifications
- Reversal of modification requires a distinct set of enzymes

Modifications Involving the α amino Group

- N^α-acylation
 - formyl
 - acetyl
 - pyruvoyl
 - $-\alpha$ -ketobutyryl
 - glucuronyl
 - pyroglutamate
 - murein

Formylation of the α -Amino Group

- Nα-formyl-Met
 - forms the start of the nascent protein chain in prokaryotes
 - Eukaryotic start signal is Met
- Deformylase may remove the CHO group
- Aminopeptidase later removes Met from some, but not all chains
- N^α-formyl-Gly
 - occurs in honey bee melittin
- Murein derivatives
 - link E. coli peptidoglycan and membrane lipoprotein

Protein Acetylation

Protein N-Acetylation

- In about 50% of yeast proteins and about 80-90% of higher eukaryotic proteins
- Very rare in E. coli
- S5 (N-Ac-Ala-Arg-...), S18 (N-Ac-Ala-His-...), L12 (N-Ac-Ser-Ile-...)

Protein N-Acetylation

A. Prokaryotes:

B. Eukaryotes:

$$H_3\dot{N}-Met$$
 $H_3\dot{N}-Met$
 $H_3\dot{N}-Met$

Specificity of Protein N-Acetylation

- Lies in the specificity of MAP
- MAP cleaves preferentially
 - Met-Gly
 - Met-Ala
 - Met-Ser
 - Met-Cys
 - Met-Thr
 - Met-Pro
 - Met-Val
- Uncovered Ser, Ala, Gly, Thr, get acetylated

N-acetyl Transferases (NATs)

- In yeast, 3 NATs (NAT A, B, and C)
- NATB and NATC acetylate proteins with Met₁ still in place
- NATB recognises M-E, M-D, M-Q, M-M
- NATC recognises M-I, M-L, M-W, M-F
- NATA acetylates S, A, G, T

N-acetyl Transferases

- In eukaryotes, hundreds of NATs exist
- Involved in K acetylation of histones
- Control
 - -transcriptional activation
 - -Chromatin assembly
 - -DNA replication
 - -Involved in N-acetylation of aminoglycoside antibiotics, results in decreased affinity of the drug for its target

Biological Significance of Nterminal Acetylation

- Unclear in eukaryotes!
- Functions only detected on a case-by-case study
- Actins are known to be acetylated at N-terminus
 - N-terminus is M-E...
 - E exposed by aminopeptidases
 - Further acetylation to yield mature N-acetyl-E
 - Strengthens interaction between actin and myosin

N-Acetylation of Lysine-ε-NH₂ Side Chains

- Interest in protein N-acetylation is on regiospecific modification of K side chains
- Large number of PTMs detected on histones
- Transcriptional coactivators and corepressors turned out to be HATs and HDACs
- N-terminal regions of histones are flexible and amenable to PTMs

N-Acetylation of Lysine-ε-NH₂ Side •Chromatin contains Chains

- •Chromatin contains H2A, H2B, H3 and H4
- •Histone core (H2A)₂(H2B)₂(H3)₂(H4)₂
- •145-147 bps around core

Histone Acetylation

Histone Acetylation

- MS analysis revealed acetylation on...
- H2A (K₅ and K₉)
- H2B (K₅, K₁₂, K₁₅, K₂₀)
- H3 (K₉, K₁₄, K₁₈, K₂₃)
- H4 (K₅, K₈, K₁₂, K₁₆)
- For two copies each of histone: 28 potential acetylation sites
- Yeast: 13 acetylation sites found/octamer
- 50% posttranslational utilization
- Immense combinatorial possibilities

Consequences of Histone Acetylation

- K's cationic at physiological pH
- N-acetylation quenches positive charges

- Electrostatic weakening of histone/DNA interactions
- Opening of the chromatin
- Allows TFs to bind to promoter regions

Consequences of Histone Acetylation

H₃ N-Termini

Modification

Function

Unmodified

Acetylated

Acetylated

Phosphorylated

Phos/Acetyl

Methylated

Higher-order

combinations

Silencing

Transcription

Histone deposition?

Mitosis/Meiosis

Transcription

Transcription?

?

Histone Acetyltransferases - A Family

 Family of GNATs (<u>G</u>cn5-related <u>N</u>acetyl<u>t</u>ransferases)

Transcriptional Activation by HATs

Histone Deacetylases (HDACS)

Histone Deacetylases (HDACS)

- HDACS are corepressors of transcription
- Maintain histone tails in hypoacetylated state
- Leads to chromosome condensation
- Silence promoters
- 2 distinct families
 - HDACs that release the acetyl moiety as acetate
 - Sirtuins (silent information regulator)

Sirtuin HDACS

Sirtuin reaction stoichiometry:

Influence of Histone Acetylation and Deacetylation on Nucleosome Structure

Protein Methylation

Protein Methylation

- Occurs on N- or O-atoms
- Methylation of -COO⁻ covers up negative charge
- N-methylation of Ks does not alter charge, increases hydrophobicity
- Di- and trimethylation of Ks increases both hydrophobicity and steric bulk
- Affects protein-protein interactions
- Occurs on ε-amino group of K, imidazole ring of H, guanidino group of R, amides of Q and N
- N-methylation irreversible

N-Methylations

O-, S-, and C-Methylations

B. O-Methylations:

C. S-Methylations:

One Carbon Donor

S-Adenosylmethionine (SAM)

Protein O-Methylation Occurs in Bacterial Chemotaxis

Protein O-Methylation

Protein O-Methylation

Function and Analysis of Post-translational Protein Modifications

Protein O-Methylation

Histone Methylation

Histone Methylation in H3

Histone Modification

- H3 modification
 - 3 Rs methylated
 - 4 Ks methylated
 - 2 Ss phosphorylated
- Results in over 110,000 combinations of possible modifications
- approx. 10⁷ possible nucleosomes

- One of the most common PTMs
- Estimate that approx. 30% of all eukaryotic proteins become phosphorylated
- Human genome codes for approx. 2,000 protein kinases
- Transient
- Regulate a vast number of biological processes
 - Enzymatic activity
 - Metabolism
 - Motility
 - Signal transduction
 - Cell division
 - Cell growth
 - Apoptosis

Ser, Thr, Tyr phosphorylation by protein kinases

- Protein kinase variants defined by the type of protein side chain modification
 - a) Ser/Thr protein kinases (e.g. cAMP-dependent PK)

b) Tyr protein kinases (e.g. insulin receptor kinase)

c) His protein kinases (e.g. bacterial two component sensor/respons regulators)

- What is the purpose/effect of protein side chain phosphorylations?
 - Protein conformational switching
 - Introduction of a dianionic phosphate group (- PO₃⁻) induces electrostatic reorganization of local regions, loops of proteins
 - Reorganization often occurs via charge pairing with a cationic Arg side chain

- What governs specificity of phosphorylation?
 - PKs recognise certain motifs

Protein Kinase	Recognition Motifs®	Phosphorylation Sites ^b	Protein Substrate (reference)
cAMP-dependent Protein Kinase (PKA, cAPK)	R-X- <mark>S/T^c</mark> R-R/K-X- <mark>S/T</mark>	Y ₇ LRRASLAQLT F ₁ RRLSIST A ₂₉ GARRKASGPP	pyruvate kinase (2) phosphorylase kinase, α chain (2) histone H1, bovine (2)
Casein Kinase I (CKI, CK-1)	S(P)-X-X- <mark>S/T</mark>	R ₄ TLS(<i>P</i>)VS <mark>S</mark> LPGL D ₄₃ IGS(<i>P</i>)ES(<i>P</i>)TEDQ	glycogen synthase, rabbit muscle (4) α _{s1} -casein (4)
Casein Kinase II (CKII, CK-2)	S/T-X-X-E	A ₇₂ DSESEDEED L ₃₇ ESEEEGVPST E ₂₆ DNSEDEISNL	PKA regulatory subunit, R _{II} (2) p34 ^{cdc2} , human (5) acetyl-CoA carboxylase (2)
Glycogen Synthase Kinase 3 (GSK-3)	S-X-X-S(P)	S ₆₄₁ VPPSPSLS(P) S ₆₄₁ VPPS(P)PSLS(P)	glycogen synthase, human (site 3b) (6,2) glycogen synthase, human (site 3a) (6,2)
Cdc2 Protein Kinase; CDK2-cyclin A	S/T-P-X-R/K¢	P ₁₃ AKTPVK H ₁₂₂ STPPKKKRK	histone H1, calf thymus (2) large T antigen (2)
Calmodulin-dependent Protein Kinase II (CaMK II)	R-X-X-S/T R-X-X-S/T-V	N ₂ YLRRRLSDSN K ₁₉₁ MARVFSVLR	synapsin (site 1) (2) calcineurin (2)
Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) (MAPK, Erk)	P-X- <mark>S/T</mark> -pd X-X- <mark>S/T</mark> -p	P ₂₄₄ LSP P ₉₂ SSP V ₄₂₀ LSP	c-Jun (7) cyclin B (7) Elk-1 (7)
Abl Tyrosine Kinase	I/V/L-Y-X-X-P/Fe		

Physiological Importance of Protein Phosphorylation

- Phosphoproteins are dephosphorylated by P-protein phosphatases
- Phosphatases counteract protein kinases
- Human genome encodes approx. 500 protein phosphatases
- Ser/Thr- and Tyr-specific phosphatases

$$O=P-O^{-}$$
 $O=P-O^{-}$
 $O=P-$

Protein Phosphatases

- Phosphatase 1
 - Ser/Thr-specific phosphatase
 - Regulates cell-cycle progression
 - Muscle contraction
 - Carbohydrate metabolism
- Protein Phosphatase 2A
 - Controls numerous cellular processes
 - Oligomeric enzymes

Protein Phosphatase 2A

Protein Phosphatase 2B, Calcineurin

- Ser/Thr phosphatase
- Controlled by cellular Ca²⁺
- Multimeric enzyme, binding to Ca²⁺/calmodulin required for active enzyme

- · Occurs in eukaryotes, not in prokaryotes
- Used for proteolytic destruction of specific proteins
- Ubiquitin is a small 76 residue protein
- Covalent attachment of multiple ubiquitin molecules to a protein substrate
- Degradation of the tagged protein by the 26S proteasome (ubiquitin is recycled)

C.
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\$$

Ubiquitination Reaction Mechanism

Enzymes Involved in the Ubiquitination Process

- E1: only one known, consists of one or two polypeptidic chains, with M.W. 105 kDa per chain, very conservative protein
- **E2:** 5-12 proteins of this type known (depending on literature), homologous family
- E3: many and structurally unrelated, characterized by ultimate biological specificity, M.W. about 250 kDa
- E4: not known yet, but postulated as existing

SUMO (Small Ubiquitin-Related Modifier)

- SUMO does not have the Lys-48 found in ubiquitin
- SUMO does not make multi-chain forms
- SUMO-1,2,3 are the mammalian form
- SUMO-1: 101 amino acids, C-terminal Gly, 18% identical to ubiquitin

SUMO Substrates

- Many of the known sumoylation substrates are nuclear proteins
 - p53
 - CREB
 - STAT1/4
 - GATA2, etc

Proteolytic Cleavage

Proteolytic Cleavage

- Following translation, most proteins undergo proteolytic cleavage
- Removal of the initiation Met
- Many proteins are synthesised as inactive precursors
- E.g. pancreatic enzymes, enzymes involved in blood clotting = proproteins
- Activation occurs via removal of polypeptides

Peptide Preprohormone

Protein Splicing

- Internal protein sequence (intein)
 Excises itself from a surrounding
- External protein
- N- and C-terminal exteins are ligated
- Protein splicing occurs in bacteria and single-celled eukaryotes
- Exteins have no sequence similarity
- Inteins have conserved splice junctions:
 - Ser/Thr/Cys at the N-terminus
 - His-Asn/Gly dipeptide at the C-terminus
- inteins encode endonucleases that copy the intein gene into extein sequences
- Intein genes propagate themselves

- Most secreted, or plasma membrane bound proteins are glycosylated
- Extracellular part modified
- Cytosolic and/or nuclear proteins also found to be glycosylated
- Predominant sugars found in glycoproteins are
 - Glucose, galactose, mannose, fucose, GalNAc, GlcNAc, NANA

- Carbohydrates attached either O- or N-glycosidacally
- N-glycosidic linkage through amide of Asn
 - Carbohydrate attachment within consensus sequence N-X-S(T)
- O-glycosidic linkage is through -OH of Ser, Thr, or OH-Lys

- Glycoproteins synthesised at rER
- Sugar attachment cotranslationally in the lumen of ER and continues in the Golgi for N-linked sugars
- O-linked sugars are attached post-translationally in the Golgi
- Sugars are activated by coupling to nucleotides
- Glc and GlcNAc are coupled to UDP
- Mannose is coupled to GDP

Glycoprotein Synthesis

 N-linked glycoprotein synthesis requires the lipid intermediate dolichol phosphate

Glycoprotein Synthesis

Function and Analysis of Post-translations Pheing GlcNac₂-P-P-dol Modifications

Sugar Trimming

Clinical Significance of Glycoproteins

- AB0 blood group antigens
 - AB0 carbohydrates linked to lipids
 - AB0 associated with proteins occur in the serum = secreted form
 - Some individuals produce secreted AB0
 - Used in forensic medicine
- Dystroglycan
 - Laminin receptor
 - alpha-distroglycan serves as receptors for Mycobacterium leprae and other pathogens
- Helicobacter pylori attaches Lewis blood group antigen on the surface of gastric mucose
- Etc....

Further Reading

- Walsh, C.T. (2005) Posttranslational Modifications of Proteins. Expanding Nature's Inventory. Roberts and Company Publishers.
- Krishna, R. G. and F. Wold (1998). Posttranslational Modifications. Proteins - Analysis and Design. R. H. Angeletti. San Diego, Academic Press. 1: 121-206.
- Wold, F., (1981) In vivo chemical modification of proteins (post-translational modification) Ann. Rev. Biochem. 50,, 783-814.