Math Connections Worksheem

MAT0028C Developmental Math II

Chapter 4

Graphing Linear Equations and Inequalities

Name: Instructor:	Date: Section:
Chapter 4	GRAPHING LINEAR EQUATIONS AND INEQUALITIES
4.1 The Rectar	ngular Coordinate System
KEY PROPER	TIES, PROCEDURES, OR STRATEGIES
Identifying the	Coordinates of a Point
Plotting a Point	
Identifying Qua	adrants

Name:

Instructor:

Date: Section:

GUIDED EXAMPLE

Write the coordinates for each point shown.

Solution

From point A, a vertical line intersects the x-axis at ______ and a horizontal line intersects the y-axis at _____.

From point *B*, a vertical line intersects the *x*-axis at _____ and a horizontal line intersects the *y*-axis at _____.

From point C, a vertical line intersects the x-axis at _____ and a horizontal line intersects the y-axis at _____.

From point *D*, a vertical line intersects the *x*-axis at _____ and a horizontal line intersects the *y*-axis at _____.

NOTES

Section:

PRACTICE PROBLEMS

Write the coordinates for each point.

1.

1.____

 -	 	

2.

						У	.						
	. <u>į</u>					5							
	٠				B	4							
	 					2				C			
ļ	. <u>.</u>					·· 1							
+	<u>:</u> -5 -	_4	A_{-}	3 -:	2 -			7	? ;	3 4	<u> </u>	5	X
	<u>.</u>					-1 -2							
						3			:::D				
	·!··					4 5			$\omega_{\mathbf{q}}$				
	·:··	•	••••			-3					:		

2.____

_	 	 	

Plot and label the points indicated by the coordinate pairs.

3. (-4,-1), (2,5), (-2,-4), (5,0)

3.

Name:

Date: Section:

Instructor:

4. (-2,5), (0,1), (1,-5), (5,5)

4.

State the quadrant in which the point is located. If the point lies on an axis, state which axis.

5.
$$(7.2, -112)$$

7.
$$(-65,301)$$

8.
$$(-34,0)$$

10.
$$(-58, -0.26)$$

Determine whether the set of points is linear or nonlinear.

13. (age of child, ounces of milk):
$$(1,8)$$
, $(3,6)$, $(5,6)$, $(7,10)$

Name: Instructor:	Dat Secti	
Chapter 4	GRAPHING LINEA INEQUALITIES	R EQUATIONS AND
4.2 Graphing I	Linear Equations	
KEY PROPER	TIES, PROCEDURES, OR	STRATEGIES
Checking a Pot	ential Solution for an Equat	ion with Two Variables
Finding Solutio	ns to Linear Equations with	Two Variables
Graphing Linea	ar Equations	
Horizontal Line	es	
In the Language		In Your Own Words
Vertical Lines		
In the Language	of Math	In Your Own Words

Instructor:

Section:

GUIDED EXAMPLES

1. Determine whether the ordered pair is a solution for the equation.

$$(2,-4)$$
; $9x-9y=15$

Solution

$$9x - 9y = 15$$

$$9()-9()=15$$

Replace x with 2 and y with -4.

$$()-()=15$$

The ordered pair [is / is not] a solution for the equation.

2. Find three solutions for the equation 3x + 2y = 6.

Solution

To find a solution, we replace one of the variables with a chosen value then solve for the value of the other variable. There are an infinite number of correct solutions for a given equation in two variables.

For the first solution, we will choose x to be 0.

$$3x + 2y = 6$$
$$3()+2y = 6$$
$$= 6$$

For the second solution, we will choose *x* to be 2.

$$3x + 2y = 6$$

$$3()+2y = 6$$

$$= 6$$

$$= -$$

For the third solution, we will choose y to be -3.

Solution: (,)

Solution: (,)

_____ = _____ Solution: (,)

We can summarize the solutions in a table.

x	у	Ordered Pair

NOTES

Date: Section:

PRACTICE PROBLEMS

Determine whether the given ordered pair is a solution for the equation.

1.
$$(-3,-5)$$
; $5x+3y=15$

2.
$$(2,6)$$
; $y = 3x + 11$

3.
$$\left(0, \frac{5}{6}\right)$$
; $4x + 6y = 5$

Find three solutions for the given equation. Then graph. (Answers may vary for the three solutions.).

4.
$$y = -3x + 2$$

5.
$$y = 4x$$

Date: Section:

6.
$$y = -\frac{1}{4}x + 3$$

6.

7.
$$4x - 5y = 20$$

Solve.

A businesswoman buys a new computer for \$1600. For each year that it is in use, she can deduct its depreciated value. The equation c = -200n + 1600gives the value after n years of use.

a. Find the value of the computer after 2 years.

In how many years will the computer be worth half of its initial value?

After how many years will the computer be c. worth \$0?

Graph the equation with n along the horizontal axis and c along the vertical axis. Because nand c are nonnegative, the graph is restricted to the first quadrant only.

8a._

d.

Name:	Date		
Instructor:	Section	on:	
Chapter 4	GRAPHING LINEAU INEQUALITIES	R EQUATIO	ONS AND
4.3 Graphing U	Ising Intercepts		
KEY VOCABU	LARY		
Term	Definition		Example
x-intercept			
y-intercept			
KEY PROPER	ΓIES, PROCEDURES, OR S	STRATEGIES	
Finding the x- a		To find a y-int	araant:
To find an x-inte	гсери:	10 mid a y-mi	Стесри
Intercepts for y	= mx		
In the Language		In Your Own	Words
The y-intercept	for $y = mx + b$		
In the Language		In Your Own	Words

Intercepts for y = c

In the Language of Math	In Your Own Words

Intercepts for x = c

	Intercepts for $x = c$	
	In the Language of Math	In Your Own Words
		·
١		

GUIDED EXAMPLE

Find the x- and y-intercepts for 4x + 2y = 8.

Solution

For the x-intercept, replace y with 0 and solve for x.

$$4x + 2y = 8$$

x-intercept: (,)

For the y-intercept, replace x with 0 and solve for y.

$$4x + 2y = 8$$

$$4(\underline{\hspace{1cm}}) + 2y = 8$$

y-intercept: (,)

NOTES

Date: Section:

PRACTICE PROBLEMS

Find the x- and y-intercepts.

1.
$$6x + 5y = 30$$

2.
$$y = 2x + 5$$

3.
$$x-4=0$$

Graph using the x- and y-intercepts.

4.
$$x-5y=10$$

5.
$$y = 2x$$

Date: Section:

6.
$$2x-2=y$$

7.
$$2x + y = 4$$

8.
$$y+3=0$$

9.
$$x-1=0$$

Name: Instructor:	Date: Section:		
Chapter 4	GRAPHING LINEAR EQUATION INEQUALITIES	ONS AND	
4.4 Slope-Interd	cept Form		
KEY VOCABU	LARY		
Term	Definition	Example	
Slope			
_			
KEY PROPER	TIES, PROCEDURES, OR STRATEGIES		
Graphs of $y = m$	x		
Cropbing Faus	tions in Slone-Intercent Form		
Graphing Equations in Slope-Intercept Form			
5			
		·	
Equation of a L	ine Given Its Slope and y-Intercept		

Date:

Name: Instructor:	Date: Section:
The Slope Formula	
Zero Slope	
In the Language of Math	In Your Own Words
Undefined Slope	
In the Language of Math	In Your Own Words
GUIDED EXAMPLE Find the slope of the line connecting the	ne given points.
(2,9) and $(-4,6)$	
Solution Using $m = \frac{y_2 - y_1}{y_2 - y_1}$ replace the y_2	ariables with their corresponding values and then
Using $m = \frac{1}{x_2 - x_1}$, replace the va	ariables with their corresponding values and then
simplify. Let $(2,9)$ be (x_1, y_1) and	$(-4,6)$ be (x_2,y_2) .

m =

Date:

Section:

PRACTICE PROBLEMS

Graph each set of equations on the same grid. For each set of equations, compare the slopes, y-intercepts, and their effects on the graphs.

1.
$$y = \frac{1}{4}x$$
$$y = x$$
$$y = 4x$$

2.
$$y = -\frac{2}{3}x$$
$$y = -x$$
$$y = -\frac{3}{2}x$$

Determine the slope and the y-intercept. Then graph the equation.

3.
$$2x + y = 4$$

Date: Section:

4.
$$2x + 5y = 10$$

Write the equation of the line in slope-intercept form given the slope and the coordinates of the y-intercept.

5.
$$m=4;\left(0,-\frac{1}{2}\right)$$

6.
$$m = -0.4; (0, 2.3)$$

Find the slope of the line through the given points.

8.
$$(-4,2),(3,5)$$

9.
$$(1,-7),(8,0)$$

10.
$$(5,4),(5,-9)$$

Chapter 4 GRAPHING LINEAR EQUATIONS AND **INEQUALITIES**

4.1 The Rectangular Coordinate System

1.
$$A(-5,1)$$
, $B(1,2)$, $C(4,-1)$, $D(0,-3)$

$$A(-5,1), B(1,2), C(4,-1), D(0,-3)$$
 2. $A(-3,0), B(-1,3), C(4,3), D(3,-4)$

3.

- 5. IV
- 6. y-axis
- 7. II
- 8. x-axis
- 9. I
- 10. III

- 11. nonlinear
- 12. linear
- 13. nonlinear

4.2 Graphing Linear Equations

- 1. no
- no
- 3. yes
- (-1,5), (0,2), (1,-1)

Answers to Worksheets for Classroom or Lab Practice

5. (-1,-4), (0,0), (1,4)

6.
$$(-4,4)$$
, $(0,3)$, $(4,2)$

(-5,-8), (0,-4), (5,0)

8a. \$1200 b. 4 yr.

8 yr.

d.

4.3 Graphing Using Intercepts

1.
$$(5,0),(0,6)$$
 2. $\left(-\frac{5}{2},0\right),(0,5)$ 3. $(4,0)$; no y-intercept

Answers to Worksheets for Classroom or Lab Practice

4.

5.

7.

8.

9.

4.4 Slope-Intercept Form

2.

3.
$$m = -2;(0,4)$$

4.
$$m = -\frac{2}{5};(0,2)$$

5.
$$y = 4x - \frac{1}{2}$$

6.
$$y = -0.4x + 2.3$$
 7. $\frac{4}{3}$

7.
$$\frac{4}{3}$$

8.
$$\frac{3}{7}$$

10. undefined