Lecture 18:
Delta-function Scattering

Phy851 Fall 2009



Delta-Function Scatterer

e Any very narrow barrier can be approximated

by a delta function:
|
V(x)=go(x)
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e The coefficient g is then the area under V(x):
g= hxw

= Energy x Length

e Conditions for validity of delta-function
approximation:

- Incoming wave characterized by k, which gives
a length-scale: 3 -2 /)

Thus we surely must require: w« A S kw << 1

— But the delta-function must have another
length scale associated with it (from V)

e Based on units only, we find a second
length scale, let’s call it "a’:
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Delta-Function Scatterer

e Scattering by the delta-function will be
handled by applying boundary conditions to
connect the wavefunctions on the left and
right sides
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Y, (x) = Ae™ + Be™™
Y, (x) = Ce™ + De™

e RECALL: a delta-function in the potential
means that y (x) is discontinuous

- But y(x) remains continuous

e PRIMARY GOAL: Determine the proper
boundary conditions for _ and _ " at the
location of a delta function scatterer

— Be able to solve " plug and chug’ problems

e Secondary Goal: find M, for the delta
potential:
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Delta-function Boundary Condition

All boundary conditions are derived from
Schrodinger's Equation:

Ey(x) = —f—mw () + g8 (W (%)

For the delta-potential, the trick is to
integrate both sides from -¢ to +¢

— Then take limitas ¢ —= 0
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Example

e Lets solve the delta-potential scattering
problem via " plug and chug’ method:

- Q: Let V(x) = g_(x). For a single incident
wave with momentum k, what are the
reflection and transmission amplitudes
and Probabilities?
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Transfer Matrix for Delta function

TR
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Continued
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Summary of Transfer Matrix Results:

e Basic Elements:

eikL O
Mfree (kL) = ( O e_l-kL)

k,+k k,-k
Mstep(k29k1)= 1 (2 1 i 1)

2%k, \k,—k, k, +k,

M(k) 1 (ika+1 1
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e For n regions (n-1 boundaries):

M = M[n,n—l]Mj[{n—l]M[n—l,n—2]...M[3,2]MJ[IZ]M[2,1]
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