
CPU Scheduling
(Chapters 7-11)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George,
F.B. Schneider, E.G. Sirer, R. Van Renesse]

In this case:
• mechanism:
- context switch between processes
• policy:
- scheduling: which process to run next

An important principle in systems design

Separating Mechanism and Policy

2

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
- handle device interrupts

• while system calls pending
- handle system calls

• if run queue is non-empty
- select process and switch to it
• otherwise

- wait for device interrupt
}

Kernel Operation (conceptual, simplified)

3

You’re the cook at State Street Diner
• customers continuously enter and place

orders 24 hours a day
• dishes take varying amounts to prepare

What is your goal?
• minimize average turnaround time?
• minimize maximum turnaround time?

Which strategy achieves your goal?

The Problem

4

What if instead you are:
• the owner of an expensive container ship

and have cargo across the world
• the head nurse managing the waiting

room of the emergency room
• a student who has to do homework in

various classes, hang out with other
students, eat, and occasionally sleep

Different goals

5

• CPU Scheduler selects a process to run
from the run queue
• Disk Scheduler selects next read/write

operation
• Network Scheduler selects next packet to

send or process
• Page Replacement Scheduler selects

page to evict

Today we’ll focus on CPU Scheduling

Schedulers in the OS

6

Processes switch between CPU & I/O bursts

CPU-bound processes: Long CPU bursts

I/O-bound processes: Short CPU bursts

We will call the green sections “jobs”
(aka tasks)

Process Model

7

emacs

matrix
multiply

PowerPoint

Processes switch between CPU & I/O bursts

CPU-bound processes: Long CPU bursts

I/O-bound processes: Short CPU bursts

Problems:
• don’t know type before running
• processes can change over time

Process Model

8

emacs

matrix
multiply

Word

How to approximate duration of next CPU-burst
• Based on the durations of the past bursts
• Use past as a predictor of the future

• No need to remember entire past history!
Use exponential moving average (aka low pass filter):

tn actual duration of nth CPU burst
tn predicted duration of nth CPU burst
tn+1 predicted duration of (n+1)th CPU burst

tn+1 = atn + (1- a) tn

0 £ a £ 1, a determines weight placed on past behavior

CPU Burst Prediction

9

EMA examples

10

Job: A task that needs a period of CPU time

Job Arrival time
• When the job was first submitted

Job Execution time
• Time needed to run the task without contention

Job Deadline
• When the task must have completed. Think videos, car

brakes, etc.

Job Characteristics

Important Metrics of Scheduling

12

Job arrival
time

First time
scheduled

Job
Completed

Turnaround Time

Response Time

• Execution Time: sum of green periods
• Total Waiting Time: sum of red periods
• Turnaround Time: sum of both

Green: task of interest is running
Red: some other task is running

Turnaround time: How long?
• User-perceived time to complete some job

Response time: When does it start?
• User-perceived time before first output

Total Waiting Time: How much thumb-twiddling?
• Time on the run queue but not running

Performance Terminology

Throughput: How many jobs over time?
• The rate at which jobs are completed

Predictability: How consistent?
• Low variance in turnaround time for repeated jobs

Overhead: How much useless work?
• Time lost due to switching between jobs

Fairness: How equal is performance?
• Equality in the resources given to each job

Starvation: How bad can it get?
• The lack of progress for one job, due to resources

given to higher priority jobs

More Performance Terminology

• Minimizes response time for each job
• Minimizes turnaround time for each job
• Maximizes predictable performance
• Maximizes overall throughput
• Maximizes utilization (aka “work conserving”):
• keeps all devices busy
• Meets all deadlines
• Is starvation-free: no one starves
• Is envy-free:
• no job wants to switch its schedule with another
• Has zero overhead

No such scheduler exists! L

The Perfect Scheduler

15

Non-preemptive
Job runs until it voluntarily yields CPU:
• process needs to wait (e.g., I/O or lock())
• process explicitly yields
• process terminates

Preemptive
All of the above, plus:
• Timer and other interrupts
-When jobs cannot be trusted to yield explicitly
• Incurs additional overhead

When does scheduler run?

16

• Cost of saving registers
• Plus cost of scheduler determining the

next process to run
• Plus cost of restoring registers

In addition, various caches may need to be
flushed (L1, L2, L3, TLB, …)

What is the context switch overhead?

17

18

Basic scheduling algorithms:

• First In First Out (FIFO)
• aka First Come First Served (FCFS)
• Shortest Job First (SJF)
• Earliest Deadline First (EDF)
• Round Robin (RR)
• Shortest Remaining Time First (SRTF)

Processes (jobs) P1, P2, P3 with execution time 12, 3, 3
All have same arrival time (so can be scheduled in any order)

Scenario 1: schedule order P1, P2, P3

Scenario 2: schedule order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3
Time 0 12 15 18Time 0

???

Average Turnaround Time:
P1P2 P3

183 6Time 0

19

Average Turnaround Time:

???

Processes (jobs) P1, P2, P3 with execution time 12, 3, 3
All have same arrival time (so can be scheduled in any order)

Scenario 1: schedule order P1, P2, P3

Scenario 2: schedule order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3
Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Turnaround Time:
P1P2 P3

183 6Time 0

20

Average Turnaround Time:

???

Processes (jobs) P1, P2, P3 with execution time 12, 3, 3
All have same arrival time (so can be scheduled in any order)

Scenario 1: schedule order P1, P2, P3

Scenario 2: schedule order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3
Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Turnaround Time:
P1P2 P3

183 6Time 0

21

Average Turnaround Time:

(3+6+18)/3 = 9

FIFO Roundup

22

The Good

The Bad

The Ugly

– Average turnaround time very
sensitive to schedule order

– Not responsive to
interactive jobs

+ Simple
+ Low-overhead
+ No Starvation

How to minimize average
turnaround time?

23

Schedule in order of execution time

Scenario : each job takes as long as its number

Shortest Job First (SJF)

Average Turnaround Time: (1+3+6+10+15)/5 = 7

P5P1 P2
151Time 0

P4P3
3 6 10

FIFO vs. SJF

25

(1)

Tasks

(3)

(2)

(5)

(4)

FIFO

(1)

Tasks

(3)

(2)

(5)

(4)

SJF

Time

Effect on the short jobs is huge.
Effect on the long job is small.
What is disadvantage of SJF?

Schedule in order of execution time

Scenario : each job takes as long as its number

Would another schedule improve avg turnaround time?

Shortest Job First (SJF)

Average Turnaround Time: (1+3+6+10+15)/5 = 7

P5P1 P2
151Time 0

P4P3
3 6 10

• Let S be a schedule of a set of jobs
• Let j1 and j2 be two neighboring jobs in S

so that j1.exe-time > j2.exe-time
• Let S’ be S with j1 and j2 switched
• S’ has lower average turnaround time
• Repeat until sorted (i.e., bubblesort)
• Resulting schedule is SJF

Informal proof of optimal turnaround time

27

SJF Roundup

28

The Good

The Bad

The Ugly

– Pessimal variance in
turnaround time
– Needs estimate of
execution time

– Can starve long jobs

+ Optimal average
turnaround time

• Schedule in order of earliest deadline
• If a schedule exists that meets all deadline, EDF

will generate such a schedule!
• does not even need to know the execution times of

the jobs

Why is that?

Earliest Deadline First (EDF)

• Let S be a schedule of a set of jobs that
meets all deadlines
• Let j1 and j2 be two neighboring jobs in S

so that j1.deadline > j2.deadline
• Let S’ be S with j1 and j2 switched
• S’ also meets all deadlines
• Repeat until sorted (i.e., bubblesort)
• Resulting schedule is EDF

Informal proof

30

EDF Roundup

31

The Good

The Bad

The Ugly

– Does not optimize other
metrics

– Cannot decide when to run
jobs without deadlines

+ Meets deadlines if possible
+ Free of starvation

• Each job allowed to run for a quantum
• quantum = some configured period of time
• Context is switched (at the latest) at the end of the

quantum
• Next job is the one on the run queue that hasn’t run

for the longest amount of time

What is a good quantum size?
• Too long, and it morphs into FIFO
• Too short, and time is wasted on context

switching
• Typical quantum: about 100X cost of context

switch (~100ms vs. << 1 ms)

Round Robin (RR)

Preemption!!

Effect of Quantum Choice in RR

33

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (100 ms time slice)

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (1 ms time slice)

Time

Rest of Task 1

Rest of Task 1

7

1 long job; 4 short ones

(1)

Tasks

(3)

(2)

(5)

(4)

FIFO and SJF

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (1 ms time slice)

Time

Round Robin vs. FIFO

34

At least it’s fair?

(1)

Tasks

(3)

(2)

(5)

(4)

FIFO and SJF

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (1 ms time slice)

Time

(1)

Tasks

(3)

(2)

(5)

(4)

FIFO and SJF

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (1 ms time slice)

Time

Optimal avg. turnaround time!

Tasks of same length that start ~same time

Mixture of one I/O Bound processes + two CPU Bound
Processes
I/O bound: compute, go to disk, repeat
à RR doesn’t seem so fair after all….

More Problems with Round Robin

35

I/O Bound

Tasks

CPU Bound

CPU Bound

Time

Issues
I/O

Request

I/O
Completes

Issues
I/O

Request

I/O
Completes

compute go to disk

wait 190 ms………….

100 ms quanta100 ms quanta

100 ms quanta

compute go to disk

RR Roundup

36

The Good

The Bad

The Ugly

– Context switch overhead
– Mix of I/O and CPU bound

–bad avg. turnaround time
for equal length jobs

+ No starvation
+ Can reduce response time

• Assign a number to each job and
schedule jobs in (increasing) order

• Can implement any scheduling policy
• e.g., reduces to SJF if tn is used as priority

Generalization: Priority Scheduling

39

estimate of execution time

• Problem: some high priority process is waiting for
some low priority process
- maybe low priority process has a lock on some resource

• Solution: High priority process (needing lock)
temporarily donates priority to lower priority process
(with lock)

“Priority Inheritance”

Priority Inversion

40

• Two approaches:
1. improve job’s priority with time (aging)
2. select jobs randomly weighted by priority

Avoiding Starvation

41

“Completely Fair Scheduler” (CFS)
• Define “Spent Execution Time” (SET) to be the

amount of time that a process has been executing
• Scheduler selects process with lowest SET
• Let △ be some time (typically, 20-50ms or so)
• Let N be the number of processes on the run queue
• Process runs for △/N time (there is a minimum value)
• If it uses up this quantum, reinsert into the queue

SET += △/N
• If a process is new or it sleeps and wakes up, then its

new SET is the maximum of its old SET and the
minimum of the SETs of the processes on the run
queue

42
Used by most

versions of Linux, …

Multi-Level Feedback Queue (MLFQ)
• Multiple levels of RR queue
• Jobs start at the top
• Use quantum? move down
• Don’t? Stay where you are
• Periodically all jobs back to top
• Approximates SRTF

Need parameters for:
• Number of queues
• Quantum length per queue
• Time to move jobs back up

44

Lowest priority

Highest priority
Quantum = 2

Quantum = 4

Quantum = 8

Quantum = 16

Used by MacOSX,

Windows, some

versions of Linux, …

Gaming the Scheduler
Processes can cheat by
• splitting app into multiple processes
• periodically terminating and restarting
• yielding CPU just before quantum expires
•…

Detecting this requires that the scheduler
maintains more state à more overhead
for the scheduler

45

Multi-core Scheduling
Desirables:
• Balance load
-each job should get approximately the same

amount of CPU, no matter what core it runs on
• Scheduling affinity
-avoid moving processes between cores
• to avoid wasting cache content (L1, TLB, etc.)

• Avoid access contention on run queue
-locking of run queue data structure
• avoid for scalability

46

Multi-core Scheduling Options

47

Single Shared
Queue

One Queue
Per Core

Balance Load ✔ ✖
Scheduling Affinity ✖ ✔

Avoid Contention ✖ ✔

Multi-core Scheduling Options

48

Single Shared
Queue

One Queue
Per Core

Balance Load ✔ ✔

Scheduling Affinity ✖ ✔

Avoid Contention ✖ ✔

Work stealing:
• Periodically balance the load between the cores
• Creates some loss of cache efficiency
• Creates some, but not much contention

Threads share code & data segments
• Option 1: Ignore this fact
• Option 2: Gang scheduling
• all threads of a process run together (pink,

green)

• Option 3: Space-based affinity
• assign tasks to processors (pink à P1, P2)

+ Improve cache hit ratio

Thread Scheduling

49

Tim
e

t1 t2 t3 t4

t1 t2 t3 t4

P1 P2 P3 P4

Tim
e

t1 t2

t3 t4

t1 t2

t3 t4

P1 P2 P3 P4

good for CPU parallelism

good for I/O parallelism

