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1. Summary and Goals

I am an algebraic geometer working in the area of tropical geometry which is a method for
associating objects called tropical varieties to algebraic varieties. These tropical varieties,
which are polyhedral complexes, are much simpler than the associated algebraic varieties
but often capture a surprising amount of information about them. They can be studied
combinatorially and can be thought of as a combinatorial approximation to the Berkovich
analytification of the original variety. My goal is to understand this process of tropicalization
by

• Studying which polyhedral complexes arise from tropicalization by developing specific
combinatorial obstructions;
• Understanding how the monodromy of a family of varieties is reflected in its tropi-

calization;
• Finding a dictionary between the algebraic geometry of varieties with smooth tropi-

calizations and the combinatorics of their tropicalizations;
• Developing enumerative geometry and linear systems on tropical surfaces;
• Generalizing the Baker-Norine theory of linear systems on graphs by studying coher-

ent cohomology on general tropical varieties;
• Systematically developing tropical Schubert calculus by using ideas from Bruhat-Tits

theory.

2. Introduction to Tropical Geometry

Discussion of my work begins the next section. This section provides tropical background.

The main theme of tropical geometry is transforming questions about algebraic varieties
into more combinatorial questions about polyhedral complexes. One begins with an algebraic
variety X, the common zero set of a system of polynomial equations in an algebraic torus
(K∗)n defined over a valued field K. By the method of tropicalization, one can define a
tropical variety, Trop(X), which is a polyhedral complex, as a combinatorial shadow of X.
The combinatorics of Trop(X) reflects the algebraic geometry of X.

Tropical geometry originally arose from considering algebraic geometry over the tropical
semiring (T,⊕,⊗) whose underlying set T is the real numbers with operations given by

a⊕ b = min(a, b), a⊗ b = a+ b.

One can then find tropical analogues of classical mathematics and define tropical polyno-
mials, tropical hypersurfaces, and tropical varieties. These objects do not look like their
classical counterparts and instead are polyhedral complexes of differing combinatorial types.
A number of people have developed tropical geometry by defining the appropriate analogues
of notions from algebraic geometry and by showing that analogous theorems hold. Other
results in this direction show that enumerative questions have the same answers tropically
and classically. A spectacular early result of Mikhalkin [Mi03] established that the num-
ber of plane curves of degree d with genus g passing through through 3d − 1 + g general
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points could be computed using tropical geometry. With collaborators, he found tropical
analogues of theorems about algebraic curves and further developed the enumerative geom-
etry of curves [Mi06, MZ08]. Gathmann, H. Markwig, and collaborators have transferred
much of Gromov-Witten theory over to tropical geometry. [Ga06, Mar07]

An approach to tropical geometry, which originated in an idea of Kapranov, is to define
a tropical variety as a shadow of an algebraic variety [EKL06]. Let K = C{{t}} be the
field of formal Puiseux series, that is, the field of Laurent series where exponents may be
fractions but with bounded denominator (one may also use other algebraically closed fields
with valuations). This field has a valuation v : K∗ → Q ⊂ R. One considers a subvariety

of an algebraic torus, X ⊂ (K∗)n, and defines its tropical variety as Trop(X) = v(X), the
closure of the image of X under the product of valuation maps v : (K∗)n → Rn. This
process of constructing Trop(X) from X is called tropicalization. It is known from the work
of Bergman and Bieri-Groves that Trop(X) is a polyhedral complex of dimension equal to
that of X. The affine span of each polyhedral cell is rational affine space. It was shown by
Speyer [Sp05] that the resulting complex has natural weights and satisfies a certain balancing
condition. If X is defined over C, then Trop(X) is a fan. We call such balanced weighted
rational polyhedral complexes tropical varieties. Those that arise from a classical variety by
tropicalization are called tropicalizations. This approach to tropical geometry is tied to the
theory of Gröbner bases in combinatorial algebraic geometry.

Trop(X) is very closely related to the dual complex of a degeneration of X over a DVR
when X is defined over a valued field K. In the case where X is defined over C, by a result of
Tevelev [Te07], Trop(X) is related to the dual complex of a compactification ofX. Therefore,
Trop(X) captures the combinatorics of stratifications (in the C case) and of degenerations (in
the K case). In the complex case, tropical geometry is a combinatorial theory of subvarieties
of a toric variety stratified by intersections with toric strata. In that sense, tropical geometry
is an enlargement of the theory of toric varieties. In the valued field case, understanding
Trop(X) comes down to understanding the combinatorics of a degeneration of X. There is
a certain tension between algebraic geometry and combinatorics in tropical geometry: if the
combinatorics of Trop(X) are simple, the algebraic geometry of the components is likely to
be complicated and rich; if the components of the degeneration are simple, the combinatorics
of Trop(X) are rich and capture the geometry of X.

The tropicalization of X reflects many of the properties of X. Trop(X) contains a lot
of information about the intersection theory of X which is why enumerative tropical geom-
etry has been successful. Moreover, Trop(X) captures properties of the monodromy of X
considered as a family of a punctured disc. It is a subtle question to determine whether a
polyhedral complex is the tropicalization of an algebraic variety. In a certain sense tropical-
izations are very special among polyhedral complexes and should have additional structures
to reflect these properties.

Tropical varieties are novel because they encode degenerations with much more compli-
cated combinatorics than previously studied. For example, Cools, Draisma, Payne, and
Robeva [CFPR] were able to give a new proof of the Brill-Noether theorem by degenerating
a higher genus curve into a union of rational curves with complicated dual graph and then
bounding the dimension of a linear system on the smooth curve using the specialization
lemma of Baker [Ba08]. This is orthogonal to the approach using limit linear series where
the dual graphs are all trees [EH86]. Moreover, tropical geometry gives an explicit way of
approaching Berkovich spaces which are a certain type of analytic spaces: it is a theorem of
Payne [P09] that the Berkovich analytification Xan of an affine variety X is homeomorphic
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to a certain inverse limit of tropicalizations lim
←−

Trop(X, ι). In a certain sense, this result
says that one can refine the tropicalization of X and keep track of additional combinatorial
data so that it contains any piece of information about the algebraic geometry of X but at
the expense of complicated combinatorics. In this sense, any given tropicalization can be
viewed as an approximation to the Berkovich space and properties of the Berkovich space
can be seen (or at least approximated) by the tropicalization.

There are many applications of tropical geometry. The work of Hacking, Keel, and Tevelev
[HKT09] constructs compactifications of moduli spaces of del Pezzo surfaces using tropical
geometry. Tillmann [Ti05] has used tropical geometry to study ideal points in the space
of hyperbolic structures on 3-manifolds. Recent work by Gubler [Gu07a, Gu07b] and Ra-
binoff [R09] have applied tropical techniques to answering questions about the arithmetic
of abelian varieties. Tropical intersection theory [AR10] generalizes Newton polytope tech-
niques in number theory [R10] and is likely to have many applications there in the future.
Tropical geometry is also used in the approaches to mirror symmetry taken by Kontsevich-
Soibelman [KS06] and Gross-Siebert [GS06, GS07]. Both approaches involve an integral
affine structure on a polyhedral complex. In one approach, it comes from a rigid analytic
Calabi-Yau manifold. In the other, it comes from a degeneration of a Calabi-Yau manifold.
Tropical geometry is related to numerical homotopy methods [HS95] in scientific computing.
It has also been applied to phylogenetics in mathematical biology [PS08] and to integrable
systems [IT08]. In Fall 2009, Tropical Geometry was the subject of a semester-long MSRI
program of which I was a postdoctoral member.

3. Results

3.1. Tropical Realization Spaces. Given a polyhedral complex Σ, it is natural to ask if
Σ is the tropicalization of an algebraic variety. This is called the tropical lifting or tropical
realization problem. I explain specific obstructions to a complex being a tropicalization
below but here I discuss a modular approach to lifting. One wishes to consider the set of all
varieties V ⊂ (K∗)n with Trop(V ) = Σ and show that they form a nice moduli space called
the tropical realization space. I have two papers (one with Sam Payne) in this direction.

Payne and I have studied realizability questions for weighted fans (F , m) in Rn [KP09].
Here one considers varieties X ⊂ (C∗)n with Trop(X) = (F , m). This case is already very
rich - Mikhalkin has given an example of a two-dimensional tropical fan that can only be the
tropicalization of a variety defined over a field of characteristic 2. We have proven that the
moduli functor for varieties with fixed tropical variety is representable by an algebraic space
(and if F is quasiprojective, a scheme of finite type). There is a distillation of non-realizability
results called Murphy’s Law [Va06] which shows that in a certain sense, a moduli space can
be arbitrarily pathological. We have proven that realization spaces (and therefore lifting
phenomena) obey Murphy’s Law. This shows that realization questions can be arbitrarily
complicated.

In [Ka10a], I studied the case of realization spaces over discretely valued fields. For (Σ, m),
a weighted polyhedral complex in Rn, in this case, the realization space is the parameter space
consisting of all varieties X ⊂ (K∗)n satisfying Trop(X) = (Σ, m). Because this constrains
the central fiber of X over a DVR, one must work with analytic conditions rather than
algebraic ones. I have shown that the (suitably defined) realization space parameterizing
varieties with tropicalization (Σ, m) is a rigid analytic space. Because of the use of rigid
analytic geometry, this is the best that can be hoped for. I have used these results to
establish a density Tropical Lefschetz Principle which shows that a property established by
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analytic techniques (say Hodge theory or by considering Hausdorff limits of amoebas) is true
for formal families over C{{t}}. I like this result because it uses the combinatorics of Chow
polytopes together with rigid analytic geometry.

3.2. The Topology of Tropical Varieties and Hodge Theory. Let f : Y ◦ → D∗ be
an algebraic family of subvarieties of (C∗)n defined over the punctured disc. Suppose that
Y ◦ is schön (a technical but natural smoothness condition). After a possible base-change,
we may complete Y ◦ to a smooth, connected, (complex) (d + 1)-dimensional manifold Y
with a proper map f : Y → D to the unit disc D which is smooth over the punctured disc
D∗ = D \ {0}. This completion depends on the choice of a polyhedral complex Σ. Let Yx

denote a generic fiber of this family. The fundamental group of the punctured disc, Z, gives
a monodromy action on the cohomology H∗(Yx) by parallel transport.

3.2.1. Relating Trop(Y ◦) to the monodromy of Y ◦. My paper with David Helm [HKa08]
studies the monodromy filtration on the cohomology of a generic fiber and relates it to
the geometry of Trop(Y ◦). The results in this paper relate the algebraic geometry of Y to
the tropical geometry of Trop(Y ◦). After possible base-change, the monodromy operator
T becomes unipotent and induces a filtration on the cohomology Hr(Yx) of a generic fiber.
The lowest part of the filtration which is of degree −r is described by a complex related to
Trop(Y ◦): there is a balanced integral polyhedral complex called the parameterizing complex
ΓY ◦ together with a surjective piecewise-linear map ΓY ◦ → Trop(Y ◦) such that Hr(Γ◦

Y ,Q) ∼=
Hr(Yx,Q)−r. This puts strong constraints on the topology of ΓY ◦ and therefore on Trop(Y ◦).
This theorem also implies a vanishing theorem for the cohomology of tropicalization of
complete intersections which is a non-constant coefficient analogue of a result of Hacking.
[Ha08]

This work also allows one to understand more explicitly the highest power of the mon-
odromy operator acting on the middle-dimensional cohomology of Yx. In fact, the action of
N = Log(T ) is encoded in the geometry of ΓY ◦ : the action Nd : Hd(Yx,Q) → Hd(Yx,Q) is
described by the map Hd(ΓY ◦ ,Q)→ Hd(ΓY ◦ ,Q) induced from the “volume pairing” on the
parameterizing complex Γ◦

Y which takes a pair of n-dimensional cycles to the (oriented) lat-
tice volume of their intersection. This result naturally generalizes my work with H. Markwig
and T. Markwig [KMM08, KMM09] on the tropical j-invariants of elliptic curves.

3.2.2. Tropical Geometry and Hodge Theory. My work with Alan Stapledon on the tropical
motivic nearby fiber [KaS10] extracts data about a certain mixed Hodge structure on Yx

from the data of the tropical variety and initial degenerations. There is a limit mixed Hodge
structure [Ste75] on the cohomology on a generic fiber of f which is denoted by Y∞. By work
of Bittner [Bi05], there is a natural invariant of the family f called the motivic nearby fiber.
This is a sort of master invariant for monodromy. It is given as a class ψf in the Grothendieck
group of varieties over C, K0(VarC) and specializes to the limit Hodge-Deligne polynomial,
E(Y∞; u, v). We define an invariant, ψ(Y ◦, Σ) the tropical motivic nearby fiber which, when
Y ◦ is schön and the recession fan of Σ is smooth, is equal to the motivic nearby fiber. It
is constructed from the data of ΓY ◦ and the initial degenerations of Y ◦. This allows us to
describe the limit Hodge-Deligne polynomial of a generic fiber and consequently the Euler
characteristic in terms of combinatorics of the tropicalization and the algberaic geometry of
initial degenerations.

There are certain cases where the ψ(Y ◦,Σ) is determined entirely by combinatorics. One is
the case of families of hypersurfaces of (C∗)n. The geometry of the initial degenerations is
described combinatorially by the work of Danilov and Khovanskĭı [DK86]. By encompassing
these results, we are able to give a formula for the limit Hodge-Deligne polynomial of the

4



family of hypersurfaces purely in terms of tropical data. The other case, that of varieties
with smooth tropicalizations, is described below.

In future work with Patrick Brosnan, Stapledon and I are going to study the relative
weight filtration on the cohomology of the open variety Y ◦. This will get us a more geometric
understanding of the tropical motivic nearby fiber. We also have very simple degeneration-
theoretic proofs of some results of the Khovanskĭı school on the geometry of hypersurfaces
in algebraic tori.

3.3. Varieties with smooth tropicalization. In a particular sense, varieties with smooth
tropicalization are the simplest varieties after toric varieties and using them, one can pursue
the project of relating algebraic geometric and combinatorial properties. Smooth tropical
varieties are polyhedral complexes locally modeled on the matroid fans of Ardila and Klivans
[AK06]. A variety with smooth tropicalization can be degenerated into a union of linear
spaces which can be understood entirely in terms of the combinatorics of its tropicalization.
With Stapledon, I have proven that if a variety Y ◦ ⊂ (K∗)n has smooth tropicalization
then Y ◦ is automatically schön. This implies that Y ◦ is smooth and has a well-behaved
degeneration over the disc. Therefore, any property of Y ◦ that survives degeneration should
be reflected in the combinatorics. Because the open strata of the central fiber are hyperplane
arrangement complements, their motivic classes are determined by their matroids as in the
work of Orlik-Solomon [OS80]. This yields a combinatorial formula for the tropical motivic
nearby fiber, Hodge-Deligne polynomial and Euler characteristic in terms of its local matroids
[KaS10].

I suspect that much more is true. On the algebraic geometric side, by computing the
differentials of the Steenbrink spectral sequence, we should be able to give a combinatorial
formula for the Hodge numbers hp,q(Hm(Y∞)). On the combinatorial side, there should be
algebraic geometric interpretations of matroid invariants like cd-indices and Tutte polyno-
mials. I plan to investigate the correspondence between matroid and algebraic geometric
invariants and find a dictionary.

3.4. Tropical Realizability. A natural question is the following: Let Σ be a polyhedral
complex. Is Σ the tropicalization of a variety? This question is combinatorial in nature but
is very subtle in that it is not immediate to distinguish tropicalizations among the polyhedral
complexes. There are variations on this question:

Problem 1. (Lifting Problem) Given a balanced weighted rational polyhedral complex Σ ⊂
Rn, when does there exist a subvariety V ⊂ (K∗)n with Trop(V ) = Σ.

Problem 2. (Relative Lifting Problem) Let W ⊂ (K∗)n be a subvariety. Given a balanced
weighted rational polyhedral complex Σ ⊂ Trop(W ), when does there exist a subvariety V ⊂
W with Trop(V ) = Σ.

These questions have significant applications outside of tropical geometry. Gibney and
Maclagan [GM10, Mac] have found a connection between relative lifting and Fulton’s con-
jecture about the effective cone ofM0,n. Bogart, Brugallé, and Cotterill have a program to
prove Clemens’s conjecture that all rational curves on a quintic threefold are rigid by showing
that the rational tropical curves on the tropicalization of the threefold are rigid. Unfortu-
nately, there are often non-rigid tropical curves which are not tropicalizations. A class of
such examples in the tropicalization of a surface were constructed by Vigeland [Vi10]. Below,
I will discuss a combinatorial criterion that allows one to rule out such curves.
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The most interesting case of lifting problems to consider are curves. Questions of when
a weighted balanced rational graph Γ in Rn is the tropicalization of a curve have been
addressed by Speyer [Sp05], Brugallé-Mikhlkin, Nishinou [N09], and Tyomkin [Ty10]. In
general, such a curve lifts when it moves in a family of the expected dimension. When
it does not, necessary and sufficient conditions are well-understood in genus 1 by work of
Speyer and partially understood in higher genera by work of Nishinou [N09] and forthcoming
work of Brugallé-Mikhalkin and Tyomkin.

3.4.1. Absolute Lifting Problem for Curves. Inspired by the work of Nishinou-Siebert [NS06],
I have found a necessary condition for non-regular space curves to lift that replicates all other
known necessary conditions and gives new obstructions for higher genus curves in cases where
the other conditions do not apply. I have approached lifting problems for curves from the
point of view of deformation theory of log stable maps of curves to toric varieties. There is a
particular heuristic for tropical lifting where one first uses the tropicalization as a blueprint
for constructing the central fiber of a semistable degeneration of the prospective lift, then
one uses deformation theory to extend central fiber to a legitimate lift. The obstruction
for lifting curves in space is in the deformation theoretic step. By relating deformation
theory and combinatorics, I’ve proven the necessity of a condition for graphs Σ to arise
as tropicalizations. This condition is phrased in the language of linear systems on graphs
as developed by Baker-Norine [BN07]. My condition involves the existence of tropical
1-forms ϕm that arise as combinatorial shadows of log 1-forms, ωm = f ∗ dzm

zm
where zm is a

character of (K∗)n. I study the necessity of lifting the tropical 1-forms ϕm to classical 1-
forms. From this, I am able to reproduce all the known necessary conditions for curve lifting.
[Sp05, N09] I also have new conditions in cases where those do not apply. In some sense,
this work unearths an unexpected combinatorial nature to deformation theory. The 1-forms
ϕm provide an additional structure on embedded tropical curves that I expect to fit into the
log geometry framework of Gross-Siebert [GS07]. I hope to soon explore the sufficiency of
my lifting criteria. This is likely to require a combinatorial understanding of the Kuranishi
map. Some results in that direction have been achieved by Nishinou [N09]. Surprisingly (to
me), this method of understanding a curve by looking at the restriction to the central fiber
of a related 1-form is very similar to Coleman’s method of effective Chabauty in the bad
reduction case as explored by Lorenzini-Tucker [LT02] and McCallum-Poonen [MP].

In the near future, I hope to extend this work to higher dimensions. While it is unre-
alistic to expect there to be sufficient conditions to guarantee that a polyhedral complex
lifts, the necessary conditions may put interesting additional combinatorial structures on
tropicalizations that encode the algebraic geometry of the original variety.

3.4.2. Relative Lifting Problem for Curves in Hypersurfaces. Another variation of the lifting
problem that I’ve investigated is the relative lifting problem for curves in hypersurfaces: Let
V (f) ⊂ (K∗)n be a hypersurface. Let Γ ⊂ Trop(V ) be a balanced weighted rational graph.
Does Γ lift to a curve on V ? The example of Vigeland falls into this situation. In Figure 1 is
pictured a tropical line in a plane and a tropical line in some cells of Vigeland’s surface. In
both cases, the line and the ambient surface lift. However, the line can lift to a subvariety
of the plane but never to a subvariety of Vigeland’s surface.

In work with Bogart [BKa10], I have found a necessary condition for such a curve to lift
by studying factorizations of polynomials in the spirit of [Stu96]. It applies to unimodular
hypersurfaces which are cut out by polynomials f ∈ K[x±1 , . . . , x

±

n ] whose Newton subdivi-
sions consist of unimodular simplexes. The condition limits the local geometry near vertices
of the tropical curve. The obstruction prevents one from constructing a particular broken
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Figure 1. Tropical line in a tropical plane and in a piece of Vigeland’s surface

curve in the central fiber of a degeneration of the hypersurface. This theorem shows that all
of Vigeland’s lines are spurious resolving some issues that had remained open and mysterious
in tropical geometry.

3.5. Other work. I do not write much about my work on tropical intersection theory
[Ka09b, Ka09c] or my work with Payne on piecewise polynomials [KP08] except that I
expect to use them in future work on enumerative geometry. They give an idea which enu-
merative properties are visible to tropical geometry. My paper on Tropical Invariants of
the Secondary Fan [Ka09a] can be interpreted as intersection theory on a moduli space of
degenerations of toric varieties. This is likely to be of use when studying curve counts rela-
tive to a non-smooth divisor in the spirit of Li’s approach to relative Gromov-Witten theory
[L01]. The intersection theory on this moduli space can yield relations among enumerative
invariants as in the paper [Ka07] based on my thesis research.

4. Ongoing Projects

4.1. Counting Tropical Curves on K3 and Abelian Surfaces. Mikhalkin’s results
on curve counting are about counting curves on projective toric surfaces. It is natural to
extend these results to more general surfaces. The enumerative geometry of classical curves
in Abelian and K3 surfaces is well-understood so one has many test cases with which to
sharpen the tropical theory.

Helm and I have approached the case of Abelian surfaces [HKa]. One should be able to
adapt the approach of Nishinou-Siebert [NS06] which involves considering degenerations of
toric varieties into broken toric varieties, counting broken curves in broken varieties, and then
verifying that they smooth. Abelian varieties have degenerations to broken toric varieties
due to Mumford [Mu72]. We have verified that the classical and tropical curve counts agree
for an infinite family of examples.

The K3 surface case is much richer. The degeneration theory of K3 surfaces is well-
understood [FM83]. The most interesting degenerations are those of Type III which have
dual complex a sphere. However, the degenerations lack some nice properties of the Abelian
surface case. In particular, some components of the central fiber are not toric varieties.
This introduces singularities in the integral affine structure. There is machinery developed
by Gross-Siebert [GS07] to handle this case. In fact, the enumeration will involve tropical
curves in the non-singular part of the dual complex and scattering terms that keep track of
components of curves in the non-toric components of the central fiber.

4.2. Tropical Linear Systems.
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4.2.1. Extending the Baker-Norine theory of linear systems to polyhedral surfaces. The Baker-
Norine theory of linear systems [BN07] on graphs is a way of estimating the dimension of a
linear system on a curve by considering the combinatorics of a degeneration. Given a curve C
defined over a discretely valued field, one considers a regular semistable model C with central
fiber C0 and dual graph Γ. Any divisor on D on C induces a divisor ρ(D) on Γ. Baker and
Norine give a combinatorial definition of the rank of ρ(D) on Γ which is an upper bound
for the dimension of any linear system on C containing D by Baker’s specialization lemma
[Ba08]. One can study the linear system on Γ intrinsically and develop Riemann-Roch and
Abel-Jacobi theory [BN07]. Such work is closely related to the chip-firing games studied by
the graph theory community [Bi99, BLS91]. The space of tropical linear systems has been
studied combinatorially by Haase, Musiker, and Yu [HMY09].

I would like to extend this theory to surfaces. Here, one considers divisors which are bal-
anced graphs on abstract tropical surfaces which are two-dimensional polyhedral complexes
equipped with an integral affine structure. There is a natural notion of linear equivalence
and rank of divisors. In this case, there is a significant problem in that the abstract definition
of a tropical surface is missing, but I have proven Baker’s specialization lemma [Ka11] in
the case where the surface is the parameterizing complex of the tropicalization of a classical
surface. The proof uses the intersection-theoretic technology that I developed in [Ka09c].
This shows that my definitions are correct and gives some hints as to the theory of abstract
tropical surfaces. The combinatorial theory of such tropical linear systems is bound to be
at least as rich as the theory of linear systems on curves. Haase, Musiker, Stapledon, and I
plan to study this.

4.2.2. Cohomology theory of coherent sheaves on complexes. While the Baker-Norine theory
of linear systems on graphs is parallel to the classical theory on curves and has theorems
analogous to Riemann-Roch and Abel-Jacobi [BN07], the arguments make use of involved
combinatorics. In fact, one does not yet have a useful notion of higher cohomology.

I would like to understand the cohomology of coherent sheaves on integral affine complexes.
In the case where the complex is the dual complex of a normal crossings degeneration of a
variety X, I have an approach in terms of Cech cohomology on the analytification Xan. One
takes a covering of the analytification Xan by the inverse images of strata of the central
fiber. By Payne’s result relating the Berkovich analytification of X to the inverse limit of
tropicalizations [P09], it should be theoretically possible to recover the sheaf cohomology of
X. I hope to investigate this point of view to define a combinatorial analogue of the higher
cohomology groups. The situation is considerably simpler in the case of graphs, and I have
a candidate definition of h1 and the first steps of a proof of tropical Riemann-Roch. I hope
to proceed by quite general arguments to a combinatorial understanding of Riemann-Roch,
Serre duality, and eventually Grothendieck-Riemann-Roch.

4.3. Tropical Schubert Calculus. Schubert calculus is intersection theory on flag mani-
folds and has resisted translation into tropical geometry. The approach I outline here which
is joint work with Maria Angelica Cueto, currently a graduate student at UC-Berkeley –
while speculative at this stage – makes contact between Schubert calculus and Bruhat-Tits
theory. Schubert calculus deals with intersections of Schubert varieties which are natural
cycles in a flag manifold and which depend on a choice of flag. In theory, one may take trop-
icalizations of Schubert varieties lying in tropical general position and intersect them, but in
practice this is very difficult because ensuring tropical general position puts a combinatorial
description beyond practical reach. Instead, we plan to understand Schubert varieties as
double Bruhat cells in a partial flag variety, G/P over the discrete valuation ring O = C[[t]].
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Tropicalization does not respect group actions so particular care must be taken to establish
a theory in which one can talk of orbits of a Borel subgroup. In other words, one should
consider a homogeneous version of tropicalization adapted to the problem. The Bruhat-Tits
building of G = Sln(C((t))) which keeps track of the specialization properties of an element
together with its conjugates is the natural object to use for such a theory.

4.4. Curves in Hyperkahler Manifolds. I have recently begun a project with Andrew
Neitzke, a mathematical physicist at University of Texas. We are interested in coming up
with a tropical interpretation of certain holomorphic disc counts in hyperkahler manifolds
given as torus fibrations [GMN10]. These disc counts are used to construct hyperkahler
metrics. I hope to find the tropical interpretation by embedding these disc counts into a
bigger tropical theory in which they are the terms in a wall-crossing formula. Perhaps such
a theory will have enough structure to force tropical and classical counts to agree. Part
of this project is developing a combinatorial interpretation of the wall-crossing formula of
Kontsevich-Soibelman [KS08]. I believe that one can systematically understand it in terms
of the recursive structure of combinatorial moduli spaces of tropical trees following ideas of
Gross [G10].
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